基于Coreset的高效变分贝叶斯-高斯混合模型

Min Zhang, Yinlin Fu, K. Bennett, Teresa Wu
{"title":"基于Coreset的高效变分贝叶斯-高斯混合模型","authors":"Min Zhang, Yinlin Fu, K. Bennett, Teresa Wu","doi":"10.1109/CITS.2016.7546405","DOIUrl":null,"url":null,"abstract":"Variational Bayesian Gaussian Mixture Model is a popular clustering algorithm with a reliable performance. However, it is noted that the model fitting process takes long time, especially when dealing with large scale data, since it utilizes the whole dataset. To address this issue, in paper we propose a new algorithm termed a weighted VBGMM via Coreset. Specifically, a new coreset construction method is first proposed to sample the data which is used to fit the model. To evaluate the algorithm, two datasets are used: 1) six rat kidney images datasets 2) three human kidney images datasets. The results show that our proposed algorithm is much faster (~ 20 times) comparing to classic VBGMM while maintaining the similar performance on whole dataset.","PeriodicalId":340958,"journal":{"name":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational efficient Variational Bayesian Gaussian Mixture Models via Coreset\",\"authors\":\"Min Zhang, Yinlin Fu, K. Bennett, Teresa Wu\",\"doi\":\"10.1109/CITS.2016.7546405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational Bayesian Gaussian Mixture Model is a popular clustering algorithm with a reliable performance. However, it is noted that the model fitting process takes long time, especially when dealing with large scale data, since it utilizes the whole dataset. To address this issue, in paper we propose a new algorithm termed a weighted VBGMM via Coreset. Specifically, a new coreset construction method is first proposed to sample the data which is used to fit the model. To evaluate the algorithm, two datasets are used: 1) six rat kidney images datasets 2) three human kidney images datasets. The results show that our proposed algorithm is much faster (~ 20 times) comparing to classic VBGMM while maintaining the similar performance on whole dataset.\",\"PeriodicalId\":340958,\"journal\":{\"name\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITS.2016.7546405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITS.2016.7546405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

变分贝叶斯-高斯混合模型是目前流行的一种性能可靠的聚类算法。然而,需要注意的是,模型拟合过程需要很长时间,特别是在处理大规模数据时,因为它使用了整个数据集。为了解决这一问题,本文提出了一种基于Coreset的加权VBGMM算法。具体而言,首先提出了一种新的核心集构建方法来对用于拟合模型的数据进行采样。为了评估该算法,使用了两个数据集:1)六个大鼠肾脏图像数据集;2)三个人肾脏图像数据集。结果表明,本文提出的算法比经典的VBGMM要快得多(约20倍),同时在整个数据集上保持相似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational efficient Variational Bayesian Gaussian Mixture Models via Coreset
Variational Bayesian Gaussian Mixture Model is a popular clustering algorithm with a reliable performance. However, it is noted that the model fitting process takes long time, especially when dealing with large scale data, since it utilizes the whole dataset. To address this issue, in paper we propose a new algorithm termed a weighted VBGMM via Coreset. Specifically, a new coreset construction method is first proposed to sample the data which is used to fit the model. To evaluate the algorithm, two datasets are used: 1) six rat kidney images datasets 2) three human kidney images datasets. The results show that our proposed algorithm is much faster (~ 20 times) comparing to classic VBGMM while maintaining the similar performance on whole dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信