{"title":"Schrödinger方程","authors":"M. Zubairy","doi":"10.1093/oso/9780198854227.003.0017","DOIUrl":null,"url":null,"abstract":"In this chapter, the Schrödinger equation is “derived” for particles that can be described by de Broglie waves. The Schrödinger equation is very different from the corresponding equation of motion in classical mechanics. In order to illustrate the fundamental differences between the two theories, one of the simplest problems of particle dynamics is solved in both Newtonian and quantum mechanics. This simple example also helps to show that quantum mechanics is the fundamental theory and classical mechanics is an approximation, a remarkably good approximation, when considering macroscopic objects. The solution of the Schrödinger equation is presented for a particle inside a box and the quantization condition is derived. The amazing possibility of quantum tunneling when a particle is incident on a barrier of height larger than the energy of the incident particle is also discussed. Finally the three-dimensional Schrödinger equation is solved for the hydrogen atom.","PeriodicalId":175266,"journal":{"name":"Quantum Mechanics for Beginners","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Schrödinger Equation\",\"authors\":\"M. Zubairy\",\"doi\":\"10.1093/oso/9780198854227.003.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the Schrödinger equation is “derived” for particles that can be described by de Broglie waves. The Schrödinger equation is very different from the corresponding equation of motion in classical mechanics. In order to illustrate the fundamental differences between the two theories, one of the simplest problems of particle dynamics is solved in both Newtonian and quantum mechanics. This simple example also helps to show that quantum mechanics is the fundamental theory and classical mechanics is an approximation, a remarkably good approximation, when considering macroscopic objects. The solution of the Schrödinger equation is presented for a particle inside a box and the quantization condition is derived. The amazing possibility of quantum tunneling when a particle is incident on a barrier of height larger than the energy of the incident particle is also discussed. Finally the three-dimensional Schrödinger equation is solved for the hydrogen atom.\",\"PeriodicalId\":175266,\"journal\":{\"name\":\"Quantum Mechanics for Beginners\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Mechanics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198854227.003.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Mechanics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198854227.003.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this chapter, the Schrödinger equation is “derived” for particles that can be described by de Broglie waves. The Schrödinger equation is very different from the corresponding equation of motion in classical mechanics. In order to illustrate the fundamental differences between the two theories, one of the simplest problems of particle dynamics is solved in both Newtonian and quantum mechanics. This simple example also helps to show that quantum mechanics is the fundamental theory and classical mechanics is an approximation, a remarkably good approximation, when considering macroscopic objects. The solution of the Schrödinger equation is presented for a particle inside a box and the quantization condition is derived. The amazing possibility of quantum tunneling when a particle is incident on a barrier of height larger than the energy of the incident particle is also discussed. Finally the three-dimensional Schrödinger equation is solved for the hydrogen atom.