Hilbert空间中非单调和非lipschitzian平衡问题的惯性梯度-黏性算法

Liang Yan, Zhaoli Ma, Xin Chang
{"title":"Hilbert空间中非单调和非lipschitzian平衡问题的惯性梯度-黏性算法","authors":"Liang Yan, Zhaoli Ma, Xin Chang","doi":"10.12988/imf.2023.912354","DOIUrl":null,"url":null,"abstract":"In this paper, combining line-search technique with viscosity method, inertial algorithm and subgradient algorithm, we propose a new iterative algorithm that does not involve in projection operators to solve the nonmonotone and non-Lipschitzian equilibrium problem in Hilbert space and obtain the strong convergence theorem. In addition, we also use our main result to the variational inequality and the convex minimization problem, and obtain the corresponding strong convergence theorems.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial extragradient-viscosity algorithms for nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces\",\"authors\":\"Liang Yan, Zhaoli Ma, Xin Chang\",\"doi\":\"10.12988/imf.2023.912354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, combining line-search technique with viscosity method, inertial algorithm and subgradient algorithm, we propose a new iterative algorithm that does not involve in projection operators to solve the nonmonotone and non-Lipschitzian equilibrium problem in Hilbert space and obtain the strong convergence theorem. In addition, we also use our main result to the variational inequality and the convex minimization problem, and obtain the corresponding strong convergence theorems.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2023.912354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2023.912354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将直线搜索技术与黏度法、惯性算法和次梯度算法相结合,提出了一种不涉及投影算子的迭代算法,用于求解Hilbert空间中的非单调非lipschitzian平衡问题,并得到了该问题的强收敛定理。此外,我们还将我们的主要结果应用于变分不等式和凸极小化问题,得到了相应的强收敛定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertial extragradient-viscosity algorithms for nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces
In this paper, combining line-search technique with viscosity method, inertial algorithm and subgradient algorithm, we propose a new iterative algorithm that does not involve in projection operators to solve the nonmonotone and non-Lipschitzian equilibrium problem in Hilbert space and obtain the strong convergence theorem. In addition, we also use our main result to the variational inequality and the convex minimization problem, and obtain the corresponding strong convergence theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信