基于学习的内容自适应模型预测速率控制目标

Huaifei Xing, Zhichao Zhou, Jialiang Wang, Huifeng Shen, Dongliang He, Fu Li
{"title":"基于学习的内容自适应模型预测速率控制目标","authors":"Huaifei Xing, Zhichao Zhou, Jialiang Wang, Huifeng Shen, Dongliang He, Fu Li","doi":"10.1109/PCS48520.2019.8954541","DOIUrl":null,"url":null,"abstract":"Rate Control (RC) plays an important role in video encoding. Traditional solutions are using fixed rate or fixed quantization parameters as the unified rate-control targets for all videos in one given video application. However, unified ratecontrol targets tend to have some bad encoding cases because of applying wrong rate for the video content. In this paper, we propose one content-adaptive rate control solution. We employ one neural-network based model which can end-to-end learn the optimal rate-control target appropriate to the content characteristics. The experimental results show that the proposed model can predict the optimal rate-factor value with the accuracy up to 77.637%. With this model, the proposed video-encoding method can significantly decrease the encoding quality fluctuation.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Predicting Rate Control Target Through A Learning Based Content Adaptive Model\",\"authors\":\"Huaifei Xing, Zhichao Zhou, Jialiang Wang, Huifeng Shen, Dongliang He, Fu Li\",\"doi\":\"10.1109/PCS48520.2019.8954541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rate Control (RC) plays an important role in video encoding. Traditional solutions are using fixed rate or fixed quantization parameters as the unified rate-control targets for all videos in one given video application. However, unified ratecontrol targets tend to have some bad encoding cases because of applying wrong rate for the video content. In this paper, we propose one content-adaptive rate control solution. We employ one neural-network based model which can end-to-end learn the optimal rate-control target appropriate to the content characteristics. The experimental results show that the proposed model can predict the optimal rate-factor value with the accuracy up to 77.637%. With this model, the proposed video-encoding method can significantly decrease the encoding quality fluctuation.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

码率控制在视频编码中起着重要的作用。传统的解决方案是使用固定的速率或固定的量化参数作为一个给定视频应用中所有视频的统一速率控制目标。但是,统一的码率控制目标由于对视频内容采用错误的码率,容易出现编码不良的情况。本文提出了一种内容自适应速率控制方案。我们采用了一种基于神经网络的模型,该模型可以端到端学习适合内容特征的最优速率控制目标。实验结果表明,该模型能够预测出最优率因子值,准确率高达77.637%。利用该模型,所提出的视频编码方法可以显著降低编码质量波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Rate Control Target Through A Learning Based Content Adaptive Model
Rate Control (RC) plays an important role in video encoding. Traditional solutions are using fixed rate or fixed quantization parameters as the unified rate-control targets for all videos in one given video application. However, unified ratecontrol targets tend to have some bad encoding cases because of applying wrong rate for the video content. In this paper, we propose one content-adaptive rate control solution. We employ one neural-network based model which can end-to-end learn the optimal rate-control target appropriate to the content characteristics. The experimental results show that the proposed model can predict the optimal rate-factor value with the accuracy up to 77.637%. With this model, the proposed video-encoding method can significantly decrease the encoding quality fluctuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信