Jun-Ling Xie, Wei Cheng, Y. Wang, B. Niu, Long Chang, Tangsheng Chen
{"title":"InGaAs/InP双异质结构双极晶体管中SiNx钝化增加电流增益","authors":"Jun-Ling Xie, Wei Cheng, Y. Wang, B. Niu, Long Chang, Tangsheng Chen","doi":"10.1109/ICCPS.2015.7454176","DOIUrl":null,"url":null,"abstract":"Passivation of InGaAs/InP double heterostructure bipolar transistors (DHBTs) with room temperature SiNx deposition was investigated. Due to reduction of surface damages during SiNx deposition, current gain improvement was observed at low bias voltage region. According to our analysis, a drastic decrease of surface recombination related current component at base-emitter junction occurred after passivation, which is crucial for improving the device reliability.","PeriodicalId":319991,"journal":{"name":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current gain increase by SiNx passivation in InGaAs/InP double heterostructure bipolar transistors\",\"authors\":\"Jun-Ling Xie, Wei Cheng, Y. Wang, B. Niu, Long Chang, Tangsheng Chen\",\"doi\":\"10.1109/ICCPS.2015.7454176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passivation of InGaAs/InP double heterostructure bipolar transistors (DHBTs) with room temperature SiNx deposition was investigated. Due to reduction of surface damages during SiNx deposition, current gain improvement was observed at low bias voltage region. According to our analysis, a drastic decrease of surface recombination related current component at base-emitter junction occurred after passivation, which is crucial for improving the device reliability.\",\"PeriodicalId\":319991,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Problem-Solving (ICCP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Problem-Solving (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2015.7454176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2015.7454176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Current gain increase by SiNx passivation in InGaAs/InP double heterostructure bipolar transistors
Passivation of InGaAs/InP double heterostructure bipolar transistors (DHBTs) with room temperature SiNx deposition was investigated. Due to reduction of surface damages during SiNx deposition, current gain improvement was observed at low bias voltage region. According to our analysis, a drastic decrease of surface recombination related current component at base-emitter junction occurred after passivation, which is crucial for improving the device reliability.