M. Jafari, H. Girgis, A. Abdi, Zhibin Liao, Mehran Pesteie, R. Rohling, K. Gin, T. Tsang, P. Abolmaesumi
{"title":"基于条件深度生成模型的半监督学习左心室分割","authors":"M. Jafari, H. Girgis, A. Abdi, Zhibin Liao, Mehran Pesteie, R. Rohling, K. Gin, T. Tsang, P. Abolmaesumi","doi":"10.1109/ISBI.2019.8759292","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of left ventricle (LV) in apical four chamber echocardiography cine is a key step in cardiac functionality assessment. Cardiologists roughly annotate two frames in the cardiac cycle, namely, the end-diastolic and end-systolic frames, as part of their clinical workflow, limiting the annotated data to less than 5% of the frames in the cardiac cycle. In this paper, we propose a semi-supervised learning algorithm to leverage the unlabeled data to improve the performance of LV segmentation algorithms. This approach is based on a generative model which learns an inverse mapping from segmentation masks to their corresponding echo frames. This generator is then used as a critic to assess and improve the LV segmentation mask generated by a given segmentation algorithm such as U-Net. This semi-supervised approach enforces a prior on the segmentation model based on the perceptual similarity of the generated frame with the original frame. This approach promotes utilization of the unlabeled samples, which, in turn, improves the segmentation accuracy.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Semi-Supervised Learning For Cardiac Left Ventricle Segmentation Using Conditional Deep Generative Models as Prior\",\"authors\":\"M. Jafari, H. Girgis, A. Abdi, Zhibin Liao, Mehran Pesteie, R. Rohling, K. Gin, T. Tsang, P. Abolmaesumi\",\"doi\":\"10.1109/ISBI.2019.8759292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of left ventricle (LV) in apical four chamber echocardiography cine is a key step in cardiac functionality assessment. Cardiologists roughly annotate two frames in the cardiac cycle, namely, the end-diastolic and end-systolic frames, as part of their clinical workflow, limiting the annotated data to less than 5% of the frames in the cardiac cycle. In this paper, we propose a semi-supervised learning algorithm to leverage the unlabeled data to improve the performance of LV segmentation algorithms. This approach is based on a generative model which learns an inverse mapping from segmentation masks to their corresponding echo frames. This generator is then used as a critic to assess and improve the LV segmentation mask generated by a given segmentation algorithm such as U-Net. This semi-supervised approach enforces a prior on the segmentation model based on the perceptual similarity of the generated frame with the original frame. This approach promotes utilization of the unlabeled samples, which, in turn, improves the segmentation accuracy.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-Supervised Learning For Cardiac Left Ventricle Segmentation Using Conditional Deep Generative Models as Prior
Accurate segmentation of left ventricle (LV) in apical four chamber echocardiography cine is a key step in cardiac functionality assessment. Cardiologists roughly annotate two frames in the cardiac cycle, namely, the end-diastolic and end-systolic frames, as part of their clinical workflow, limiting the annotated data to less than 5% of the frames in the cardiac cycle. In this paper, we propose a semi-supervised learning algorithm to leverage the unlabeled data to improve the performance of LV segmentation algorithms. This approach is based on a generative model which learns an inverse mapping from segmentation masks to their corresponding echo frames. This generator is then used as a critic to assess and improve the LV segmentation mask generated by a given segmentation algorithm such as U-Net. This semi-supervised approach enforces a prior on the segmentation model based on the perceptual similarity of the generated frame with the original frame. This approach promotes utilization of the unlabeled samples, which, in turn, improves the segmentation accuracy.