基于条件深度生成模型的半监督学习左心室分割

M. Jafari, H. Girgis, A. Abdi, Zhibin Liao, Mehran Pesteie, R. Rohling, K. Gin, T. Tsang, P. Abolmaesumi
{"title":"基于条件深度生成模型的半监督学习左心室分割","authors":"M. Jafari, H. Girgis, A. Abdi, Zhibin Liao, Mehran Pesteie, R. Rohling, K. Gin, T. Tsang, P. Abolmaesumi","doi":"10.1109/ISBI.2019.8759292","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of left ventricle (LV) in apical four chamber echocardiography cine is a key step in cardiac functionality assessment. Cardiologists roughly annotate two frames in the cardiac cycle, namely, the end-diastolic and end-systolic frames, as part of their clinical workflow, limiting the annotated data to less than 5% of the frames in the cardiac cycle. In this paper, we propose a semi-supervised learning algorithm to leverage the unlabeled data to improve the performance of LV segmentation algorithms. This approach is based on a generative model which learns an inverse mapping from segmentation masks to their corresponding echo frames. This generator is then used as a critic to assess and improve the LV segmentation mask generated by a given segmentation algorithm such as U-Net. This semi-supervised approach enforces a prior on the segmentation model based on the perceptual similarity of the generated frame with the original frame. This approach promotes utilization of the unlabeled samples, which, in turn, improves the segmentation accuracy.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Semi-Supervised Learning For Cardiac Left Ventricle Segmentation Using Conditional Deep Generative Models as Prior\",\"authors\":\"M. Jafari, H. Girgis, A. Abdi, Zhibin Liao, Mehran Pesteie, R. Rohling, K. Gin, T. Tsang, P. Abolmaesumi\",\"doi\":\"10.1109/ISBI.2019.8759292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of left ventricle (LV) in apical four chamber echocardiography cine is a key step in cardiac functionality assessment. Cardiologists roughly annotate two frames in the cardiac cycle, namely, the end-diastolic and end-systolic frames, as part of their clinical workflow, limiting the annotated data to less than 5% of the frames in the cardiac cycle. In this paper, we propose a semi-supervised learning algorithm to leverage the unlabeled data to improve the performance of LV segmentation algorithms. This approach is based on a generative model which learns an inverse mapping from segmentation masks to their corresponding echo frames. This generator is then used as a critic to assess and improve the LV segmentation mask generated by a given segmentation algorithm such as U-Net. This semi-supervised approach enforces a prior on the segmentation model based on the perceptual similarity of the generated frame with the original frame. This approach promotes utilization of the unlabeled samples, which, in turn, improves the segmentation accuracy.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在心功能评估中,心尖四室超声心动图准确分割左心室(LV)是关键一步。作为临床工作流程的一部分,心脏病专家大致注释了心脏周期中的两个框架,即舒张末期框架和收缩末期框架,将注释数据限制在心脏周期框架的5%以下。在本文中,我们提出了一种半监督学习算法来利用未标记数据来提高LV分割算法的性能。该方法基于生成模型,该模型学习从分割掩码到相应回波帧的逆映射。然后将该生成器用作评论家来评估和改进由给定分割算法(如U-Net)生成的LV分割掩码。这种半监督方法基于生成的帧与原始帧的感知相似性对分割模型进行先验处理。这种方法促进了未标记样本的利用,从而提高了分割的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Learning For Cardiac Left Ventricle Segmentation Using Conditional Deep Generative Models as Prior
Accurate segmentation of left ventricle (LV) in apical four chamber echocardiography cine is a key step in cardiac functionality assessment. Cardiologists roughly annotate two frames in the cardiac cycle, namely, the end-diastolic and end-systolic frames, as part of their clinical workflow, limiting the annotated data to less than 5% of the frames in the cardiac cycle. In this paper, we propose a semi-supervised learning algorithm to leverage the unlabeled data to improve the performance of LV segmentation algorithms. This approach is based on a generative model which learns an inverse mapping from segmentation masks to their corresponding echo frames. This generator is then used as a critic to assess and improve the LV segmentation mask generated by a given segmentation algorithm such as U-Net. This semi-supervised approach enforces a prior on the segmentation model based on the perceptual similarity of the generated frame with the original frame. This approach promotes utilization of the unlabeled samples, which, in turn, improves the segmentation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信