{"title":"基于导通延时估计的SiC肖特基势垒二极管结温测量研究","authors":"Xun Wang, Shiwei Feng, Jingwei Li, Bangbing Shi","doi":"10.1109/ICAM.2017.8242163","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method to derive the junction temperature of a Silicon Carbide Schottky Barrier Diode (SiC SBD) when it is in operation. There is a correlation between the switching waveforms and the temperature, due to the material parameters and the carrier vary with the temperature. Estimating the Turn-on-delay time as a temperature sensitive electrical parameter (TSEP), the chip temperature in operation can be evaluated. The experiment is based on signal loop — dealing with the output signal of the chip by the peripheral circuits, then putting it as the switching signal to the chip. Thus, each minimal turn-on-delay time — at nanosecond level — can be accumulated to be a time span at microsecond or second level and the value is averaged to evaluate the turn-on-delay time.","PeriodicalId":117801,"journal":{"name":"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on junction temperature measurement of SiC Schottky Barrier diode based on turn-on-delay time estimation\",\"authors\":\"Xun Wang, Shiwei Feng, Jingwei Li, Bangbing Shi\",\"doi\":\"10.1109/ICAM.2017.8242163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method to derive the junction temperature of a Silicon Carbide Schottky Barrier Diode (SiC SBD) when it is in operation. There is a correlation between the switching waveforms and the temperature, due to the material parameters and the carrier vary with the temperature. Estimating the Turn-on-delay time as a temperature sensitive electrical parameter (TSEP), the chip temperature in operation can be evaluated. The experiment is based on signal loop — dealing with the output signal of the chip by the peripheral circuits, then putting it as the switching signal to the chip. Thus, each minimal turn-on-delay time — at nanosecond level — can be accumulated to be a time span at microsecond or second level and the value is averaged to evaluate the turn-on-delay time.\",\"PeriodicalId\":117801,\"journal\":{\"name\":\"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAM.2017.8242163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Integrated Circuits and Microsystems (ICICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAM.2017.8242163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on junction temperature measurement of SiC Schottky Barrier diode based on turn-on-delay time estimation
This paper proposes a novel method to derive the junction temperature of a Silicon Carbide Schottky Barrier Diode (SiC SBD) when it is in operation. There is a correlation between the switching waveforms and the temperature, due to the material parameters and the carrier vary with the temperature. Estimating the Turn-on-delay time as a temperature sensitive electrical parameter (TSEP), the chip temperature in operation can be evaluated. The experiment is based on signal loop — dealing with the output signal of the chip by the peripheral circuits, then putting it as the switching signal to the chip. Thus, each minimal turn-on-delay time — at nanosecond level — can be accumulated to be a time span at microsecond or second level and the value is averaged to evaluate the turn-on-delay time.