彩虹着色的细粒度复杂性及其变体

A. Agrawal
{"title":"彩虹着色的细粒度复杂性及其变体","authors":"A. Agrawal","doi":"10.4230/LIPIcs.MFCS.2017.60","DOIUrl":null,"url":null,"abstract":"Abstract For a graph G and c R : E ( G ) → [ k ] , a path P between u , v ∈ V ( G ) is a rainbow path if for distinct e , e ′ ∈ E ( P ) , we have c R ( e ) ≠ c R ( e ′ ) . Rainbow k -Coloring takes a graph G and the objective is to check if there is c R : E ( G ) → [ k ] such that for all u , v ∈ V ( G ) there is a rainbow path between u and v. Two variants of the above problem are Subset Rainbow k -Coloring and Steiner Rainbow k -Coloring , where we are additionally given a subset S ⊆ V ( G ) × V ( G ) and S ′ ⊆ V ( G ) , respectively. Moreover, the objective is to check if there is c R : E ( G ) → [ k ] , such that there is a rainbow path for each ( u , v ) ∈ S and u , v ∈ S ′ , respectively. Under ETH, we obtain that for each k ≥ 3 : 1. Rainbow k -Coloring has no 2 o ( | E ( G ) | ) n O ( 1 ) -time algorithm. 2. Steiner Rainbow k -Coloring has no 2 o ( | S | 2 ) n O ( 1 ) -time algorithm. We also obtain that Subset Rainbow k -Coloring and Steiner Rainbow k -Coloring admit 2 O ( | S | ) n O ( 1 ) - and 2 O ( | S | 2 ) n O ( 1 ) -time algorithms, respectively.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fine-Grained Complexity of Rainbow Coloring and its Variants\",\"authors\":\"A. Agrawal\",\"doi\":\"10.4230/LIPIcs.MFCS.2017.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a graph G and c R : E ( G ) → [ k ] , a path P between u , v ∈ V ( G ) is a rainbow path if for distinct e , e ′ ∈ E ( P ) , we have c R ( e ) ≠ c R ( e ′ ) . Rainbow k -Coloring takes a graph G and the objective is to check if there is c R : E ( G ) → [ k ] such that for all u , v ∈ V ( G ) there is a rainbow path between u and v. Two variants of the above problem are Subset Rainbow k -Coloring and Steiner Rainbow k -Coloring , where we are additionally given a subset S ⊆ V ( G ) × V ( G ) and S ′ ⊆ V ( G ) , respectively. Moreover, the objective is to check if there is c R : E ( G ) → [ k ] , such that there is a rainbow path for each ( u , v ) ∈ S and u , v ∈ S ′ , respectively. Under ETH, we obtain that for each k ≥ 3 : 1. Rainbow k -Coloring has no 2 o ( | E ( G ) | ) n O ( 1 ) -time algorithm. 2. Steiner Rainbow k -Coloring has no 2 o ( | S | 2 ) n O ( 1 ) -time algorithm. We also obtain that Subset Rainbow k -Coloring and Steiner Rainbow k -Coloring admit 2 O ( | S | ) n O ( 1 ) - and 2 O ( | S | 2 ) n O ( 1 ) -time algorithms, respectively.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.MFCS.2017.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2017.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要对于图G和c R: E (G)→[k],如果对于不同的E, E '∈E (P),我们有c R (E)≠c R (E '),则u, v∈v (G)之间的路径P是彩虹路径。彩虹k着色图G,目的是检查如果有c R: E (G)→[k],这样所有u, v∈v (G)之间有一个彩虹路u和v以上问题的两个变量子集彩虹k着色和斯坦纳彩虹k着色,我们另外给一个子集S⊆v (G)×v (G)和年代分别⊆v (G)。此外,目的是检查是否存在c R: E (G)→[k],使得每个(u, v)∈S和u, v∈S '分别存在彩虹路径。在ETH下,我们得到每k≥3:1。Rainbow k -Coloring没有2o (| E (G) |) no(1)时间算法。2. Steiner Rainbow k -Coloring没有2 o (| S | 2) no(1)时间算法。我们还得到了子集Rainbow k - coloring和Steiner Rainbow k - coloring分别支持2o (| S |) n O(1) -和2o (| S | 2) n O(1)时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Complexity of Rainbow Coloring and its Variants
Abstract For a graph G and c R : E ( G ) → [ k ] , a path P between u , v ∈ V ( G ) is a rainbow path if for distinct e , e ′ ∈ E ( P ) , we have c R ( e ) ≠ c R ( e ′ ) . Rainbow k -Coloring takes a graph G and the objective is to check if there is c R : E ( G ) → [ k ] such that for all u , v ∈ V ( G ) there is a rainbow path between u and v. Two variants of the above problem are Subset Rainbow k -Coloring and Steiner Rainbow k -Coloring , where we are additionally given a subset S ⊆ V ( G ) × V ( G ) and S ′ ⊆ V ( G ) , respectively. Moreover, the objective is to check if there is c R : E ( G ) → [ k ] , such that there is a rainbow path for each ( u , v ) ∈ S and u , v ∈ S ′ , respectively. Under ETH, we obtain that for each k ≥ 3 : 1. Rainbow k -Coloring has no 2 o ( | E ( G ) | ) n O ( 1 ) -time algorithm. 2. Steiner Rainbow k -Coloring has no 2 o ( | S | 2 ) n O ( 1 ) -time algorithm. We also obtain that Subset Rainbow k -Coloring and Steiner Rainbow k -Coloring admit 2 O ( | S | ) n O ( 1 ) - and 2 O ( | S | 2 ) n O ( 1 ) -time algorithms, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信