Hu Fu, Nima Haghpanah, Jason D. Hartline, Robert D. Kleinberg
{"title":"抽样关联买家的最优拍卖","authors":"Hu Fu, Nima Haghpanah, Jason D. Hartline, Robert D. Kleinberg","doi":"10.1145/2600057.2602895","DOIUrl":null,"url":null,"abstract":"Crémer and McLean [1985] showed that, when buyers' valuations are drawn from a correlated distribution, an auction with full knowledge on the distribution can extract the full social surplus. We study whether this phenomenon persists when the auctioneer has only incomplete knowledge of the distribution, represented by a finite family of candidate distributions, and has sample access to the real distribution. We show that the naive approach which uses samples to distinguish candidate distributions may fail, whereas an extended version of the Crémer-McLean auction simultaneously extracts full social surplus under each candidate distribution. With an algebraic argument, we give a tight bound on the number of samples needed by this auction, which is the difference between the number of candidate distributions and the dimension of the linear space they span.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Optimal auctions for correlated buyers with sampling\",\"authors\":\"Hu Fu, Nima Haghpanah, Jason D. Hartline, Robert D. Kleinberg\",\"doi\":\"10.1145/2600057.2602895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crémer and McLean [1985] showed that, when buyers' valuations are drawn from a correlated distribution, an auction with full knowledge on the distribution can extract the full social surplus. We study whether this phenomenon persists when the auctioneer has only incomplete knowledge of the distribution, represented by a finite family of candidate distributions, and has sample access to the real distribution. We show that the naive approach which uses samples to distinguish candidate distributions may fail, whereas an extended version of the Crémer-McLean auction simultaneously extracts full social surplus under each candidate distribution. With an algebraic argument, we give a tight bound on the number of samples needed by this auction, which is the difference between the number of candidate distributions and the dimension of the linear space they span.\",\"PeriodicalId\":203155,\"journal\":{\"name\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2600057.2602895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600057.2602895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal auctions for correlated buyers with sampling
Crémer and McLean [1985] showed that, when buyers' valuations are drawn from a correlated distribution, an auction with full knowledge on the distribution can extract the full social surplus. We study whether this phenomenon persists when the auctioneer has only incomplete knowledge of the distribution, represented by a finite family of candidate distributions, and has sample access to the real distribution. We show that the naive approach which uses samples to distinguish candidate distributions may fail, whereas an extended version of the Crémer-McLean auction simultaneously extracts full social surplus under each candidate distribution. With an algebraic argument, we give a tight bound on the number of samples needed by this auction, which is the difference between the number of candidate distributions and the dimension of the linear space they span.