{"title":"基于粒子群算法的点云目标姿态估计","authors":"Ge Yu, Ming Liu, Tianyu Liu, Lili Guo","doi":"10.1145/3220511.3220512","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of pose estimation based on point cloud. We modify the Iterative closest face (ICF) algorithm by mathematical techniques, in which a new method to calculate point-face distance with less computational cost is proposed. Then, we combine this algorithm with particle swarm optimization to get a better searched result. PSO is employed because there are few parameters to adjust and it is more efficient than the original searched method in ICF. A set of experiments is conducted, following the statistical analysis of the results. These experiments demonstrate the accuracy and robustness of our algorithm.","PeriodicalId":177319,"journal":{"name":"Proceedings of the International Conference on Machine Vision and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of Point Cloud Object Pose Using Particle Swarm Optimization\",\"authors\":\"Ge Yu, Ming Liu, Tianyu Liu, Lili Guo\",\"doi\":\"10.1145/3220511.3220512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the problem of pose estimation based on point cloud. We modify the Iterative closest face (ICF) algorithm by mathematical techniques, in which a new method to calculate point-face distance with less computational cost is proposed. Then, we combine this algorithm with particle swarm optimization to get a better searched result. PSO is employed because there are few parameters to adjust and it is more efficient than the original searched method in ICF. A set of experiments is conducted, following the statistical analysis of the results. These experiments demonstrate the accuracy and robustness of our algorithm.\",\"PeriodicalId\":177319,\"journal\":{\"name\":\"Proceedings of the International Conference on Machine Vision and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3220511.3220512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3220511.3220512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation of Point Cloud Object Pose Using Particle Swarm Optimization
In this paper, we deal with the problem of pose estimation based on point cloud. We modify the Iterative closest face (ICF) algorithm by mathematical techniques, in which a new method to calculate point-face distance with less computational cost is proposed. Then, we combine this algorithm with particle swarm optimization to get a better searched result. PSO is employed because there are few parameters to adjust and it is more efficient than the original searched method in ICF. A set of experiments is conducted, following the statistical analysis of the results. These experiments demonstrate the accuracy and robustness of our algorithm.