基于粒子群算法的点云目标姿态估计

Ge Yu, Ming Liu, Tianyu Liu, Lili Guo
{"title":"基于粒子群算法的点云目标姿态估计","authors":"Ge Yu, Ming Liu, Tianyu Liu, Lili Guo","doi":"10.1145/3220511.3220512","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of pose estimation based on point cloud. We modify the Iterative closest face (ICF) algorithm by mathematical techniques, in which a new method to calculate point-face distance with less computational cost is proposed. Then, we combine this algorithm with particle swarm optimization to get a better searched result. PSO is employed because there are few parameters to adjust and it is more efficient than the original searched method in ICF. A set of experiments is conducted, following the statistical analysis of the results. These experiments demonstrate the accuracy and robustness of our algorithm.","PeriodicalId":177319,"journal":{"name":"Proceedings of the International Conference on Machine Vision and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of Point Cloud Object Pose Using Particle Swarm Optimization\",\"authors\":\"Ge Yu, Ming Liu, Tianyu Liu, Lili Guo\",\"doi\":\"10.1145/3220511.3220512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the problem of pose estimation based on point cloud. We modify the Iterative closest face (ICF) algorithm by mathematical techniques, in which a new method to calculate point-face distance with less computational cost is proposed. Then, we combine this algorithm with particle swarm optimization to get a better searched result. PSO is employed because there are few parameters to adjust and it is more efficient than the original searched method in ICF. A set of experiments is conducted, following the statistical analysis of the results. These experiments demonstrate the accuracy and robustness of our algorithm.\",\"PeriodicalId\":177319,\"journal\":{\"name\":\"Proceedings of the International Conference on Machine Vision and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Machine Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3220511.3220512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3220511.3220512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了基于点云的姿态估计问题。利用数学方法对迭代最近面(ICF)算法进行了改进,提出了一种计算代价较小的点面距离计算方法。然后,将该算法与粒子群算法相结合,得到更好的搜索结果。在ICF中,由于粒子群算法需要调整的参数很少,并且比原有的搜索方法效率更高,因此采用了粒子群算法。在对结果进行统计分析之后,进行了一组实验。实验证明了算法的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Point Cloud Object Pose Using Particle Swarm Optimization
In this paper, we deal with the problem of pose estimation based on point cloud. We modify the Iterative closest face (ICF) algorithm by mathematical techniques, in which a new method to calculate point-face distance with less computational cost is proposed. Then, we combine this algorithm with particle swarm optimization to get a better searched result. PSO is employed because there are few parameters to adjust and it is more efficient than the original searched method in ICF. A set of experiments is conducted, following the statistical analysis of the results. These experiments demonstrate the accuracy and robustness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信