基于Windows Azure的遥感算法平台

Deqiang Gan, K. Du, Y. Qu, Yuzhen Zhang, Linli Liu
{"title":"基于Windows Azure的遥感算法平台","authors":"Deqiang Gan, K. Du, Y. Qu, Yuzhen Zhang, Linli Liu","doi":"10.1109/Geoinformatics.2012.6270351","DOIUrl":null,"url":null,"abstract":"As a kind of eScience, remote sensing needs numerous computing resources to process data. A lack of computing resources restricts many scientists' work. The advent of cloud computing solves the problem perfectly for its low-cost and highly scalable computing power. This paper introduces the remote sensing algorithm platform running on Windows Azure. Windows Azure provides the relevant algorithm and efficient and extensive computing resources to solve large scale remote sensing image processing computations for myriad researchers. This platform applies the MapReduce model that constructs the parallel data processing module to organize and coordinate work flow among virtual machines. Efficiency tests show that by using the MapReduce model, the remote sensing algorithm platform efficiency in data processing has been dramatically improved. This paper relays the experience of using Windows Azure in eScience scenarios similar to remote sensing for reference in future research.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Remote sensing algorithm platform in Windows Azure\",\"authors\":\"Deqiang Gan, K. Du, Y. Qu, Yuzhen Zhang, Linli Liu\",\"doi\":\"10.1109/Geoinformatics.2012.6270351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a kind of eScience, remote sensing needs numerous computing resources to process data. A lack of computing resources restricts many scientists' work. The advent of cloud computing solves the problem perfectly for its low-cost and highly scalable computing power. This paper introduces the remote sensing algorithm platform running on Windows Azure. Windows Azure provides the relevant algorithm and efficient and extensive computing resources to solve large scale remote sensing image processing computations for myriad researchers. This platform applies the MapReduce model that constructs the parallel data processing module to organize and coordinate work flow among virtual machines. Efficiency tests show that by using the MapReduce model, the remote sensing algorithm platform efficiency in data processing has been dramatically improved. This paper relays the experience of using Windows Azure in eScience scenarios similar to remote sensing for reference in future research.\",\"PeriodicalId\":259976,\"journal\":{\"name\":\"2012 20th International Conference on Geoinformatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Geoinformatics.2012.6270351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

遥感作为一门科学,需要大量的计算资源来处理数据。缺乏计算资源限制了许多科学家的工作。云计算的出现以其低成本和高度可扩展的计算能力完美地解决了这个问题。本文介绍了基于Windows Azure的遥感算法平台。Windows Azure提供了相关的算法和高效、广泛的计算资源,为无数研究者解决大规模遥感图像处理计算。该平台采用MapReduce模型构建并行数据处理模块,组织协调虚拟机之间的工作流程。效率测试表明,通过使用MapReduce模型,遥感算法平台在数据处理方面的效率得到了显著提高。本文借鉴了在类似遥感的eScience场景中使用Windows Azure的经验,为今后的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote sensing algorithm platform in Windows Azure
As a kind of eScience, remote sensing needs numerous computing resources to process data. A lack of computing resources restricts many scientists' work. The advent of cloud computing solves the problem perfectly for its low-cost and highly scalable computing power. This paper introduces the remote sensing algorithm platform running on Windows Azure. Windows Azure provides the relevant algorithm and efficient and extensive computing resources to solve large scale remote sensing image processing computations for myriad researchers. This platform applies the MapReduce model that constructs the parallel data processing module to organize and coordinate work flow among virtual machines. Efficiency tests show that by using the MapReduce model, the remote sensing algorithm platform efficiency in data processing has been dramatically improved. This paper relays the experience of using Windows Azure in eScience scenarios similar to remote sensing for reference in future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信