基于二部图聚类的半监督离群点检测

Ayman El-Kilany, N. Tazi, Ehab Ezzat
{"title":"基于二部图聚类的半监督离群点检测","authors":"Ayman El-Kilany, N. Tazi, Ehab Ezzat","doi":"10.1109/AICCSA.2016.7945629","DOIUrl":null,"url":null,"abstract":"A considerable amount of attributes in real datasets are not numerical, but rather textual and categorical. We investigate the problem of identifying outliers in categorical and textual datasets. We propose a clustering-based semi-supervised outlier detection method which basically represents normal and unlabeled data points as a bipartite graph. We leverage the existing free of parameters clustering techniques to cluster the resulting graph. The bipartite graph is clustered with a specific end goal to distinguish unlabeled data points as either outliers or normal data points. The proposed method is evaluated using multiple categorical and textual datasets against one-class support vector machines classifier and FRaC approach for semi-supervised outlier detection where the proposed method has shown a comparable performance.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Semi-supervised outlier detection via bipartite graph clustering\",\"authors\":\"Ayman El-Kilany, N. Tazi, Ehab Ezzat\",\"doi\":\"10.1109/AICCSA.2016.7945629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A considerable amount of attributes in real datasets are not numerical, but rather textual and categorical. We investigate the problem of identifying outliers in categorical and textual datasets. We propose a clustering-based semi-supervised outlier detection method which basically represents normal and unlabeled data points as a bipartite graph. We leverage the existing free of parameters clustering techniques to cluster the resulting graph. The bipartite graph is clustered with a specific end goal to distinguish unlabeled data points as either outliers or normal data points. The proposed method is evaluated using multiple categorical and textual datasets against one-class support vector machines classifier and FRaC approach for semi-supervised outlier detection where the proposed method has shown a comparable performance.\",\"PeriodicalId\":448329,\"journal\":{\"name\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2016.7945629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实际数据集中相当多的属性不是数字的,而是文本的和分类的。我们研究了在分类和文本数据集中识别异常值的问题。我们提出了一种基于聚类的半监督离群点检测方法,该方法基本上将正常和未标记的数据点表示为二部图。我们利用现有的无参数聚类技术对结果图进行聚类。二部图与特定的最终目标聚类,以区分未标记的数据点作为异常值或正常数据点。该方法使用多个分类和文本数据集对一类支持向量机分类器和FRaC方法进行评估,用于半监督离群值检测,其中所提出的方法显示出相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised outlier detection via bipartite graph clustering
A considerable amount of attributes in real datasets are not numerical, but rather textual and categorical. We investigate the problem of identifying outliers in categorical and textual datasets. We propose a clustering-based semi-supervised outlier detection method which basically represents normal and unlabeled data points as a bipartite graph. We leverage the existing free of parameters clustering techniques to cluster the resulting graph. The bipartite graph is clustered with a specific end goal to distinguish unlabeled data points as either outliers or normal data points. The proposed method is evaluated using multiple categorical and textual datasets against one-class support vector machines classifier and FRaC approach for semi-supervised outlier detection where the proposed method has shown a comparable performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信