二自由度可积哈密顿系统的一个拓扑不变量和等价准则

A. Fomenko, Kh Tsishang
{"title":"二自由度可积哈密顿系统的一个拓扑不变量和等价准则","authors":"A. Fomenko, Kh Tsishang","doi":"10.1070/IM1991V036N03ABEH002035","DOIUrl":null,"url":null,"abstract":"A new topological invariant is constructed which classifies integrable Hamiltonian systems with two degrees of freedom (admitting a Bott integral). A criterion for the equivalence of Bott systems is proved: such systems are topologically equivalent if and only if their topological invariants coincide. The topological invariant is effectively calculated for specific integrable Hamiltonian systems in physics and mechanics.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"A TOPOLOGICAL INVARIANT AND A CRITERION FOR THE EQUIVALENCE OF INTEGRABLE HAMILTONIAN SYSTEMS WITH TWO DEGREES OF FREEDOM\",\"authors\":\"A. Fomenko, Kh Tsishang\",\"doi\":\"10.1070/IM1991V036N03ABEH002035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new topological invariant is constructed which classifies integrable Hamiltonian systems with two degrees of freedom (admitting a Bott integral). A criterion for the equivalence of Bott systems is proved: such systems are topologically equivalent if and only if their topological invariants coincide. The topological invariant is effectively calculated for specific integrable Hamiltonian systems in physics and mechanics.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1991V036N03ABEH002035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V036N03ABEH002035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

构造了一个新的拓扑不变量,对两自由度可积哈密顿系统进行了分类(允许有一个Bott积分)。证明了博特系统等价的一个判据:当且仅当博特系统的拓扑不变量重合时,它们是拓扑等价的。对物理和力学中特定可积哈密顿系统的拓扑不变量进行了有效的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A TOPOLOGICAL INVARIANT AND A CRITERION FOR THE EQUIVALENCE OF INTEGRABLE HAMILTONIAN SYSTEMS WITH TWO DEGREES OF FREEDOM
A new topological invariant is constructed which classifies integrable Hamiltonian systems with two degrees of freedom (admitting a Bott integral). A criterion for the equivalence of Bott systems is proved: such systems are topologically equivalent if and only if their topological invariants coincide. The topological invariant is effectively calculated for specific integrable Hamiltonian systems in physics and mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信