非自治分数反应扩散系统的爆破

Aroldo Pérez
{"title":"非自治分数反应扩散系统的爆破","authors":"Aroldo Pérez","doi":"10.7153/fdc-2020-10-01","DOIUrl":null,"url":null,"abstract":". We provide a suf fi cient condition for fi nite time blow up of the positive mild solution to the nonautonomous Cauchy problem of a reaction-diffusion system with distinct fractional diffusions. The proof is based on the reduction to an ordinary differential system by means of a comparison between the transition densities of the semigroups generated by the different fractional Laplacians. Moreover, we prove that this condition is also a suf fi cient condition for the blow up of a related nonautonomous fractional diffusion-convection-reaction system.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow up of nonautonomous fractional reaction-diffusion systems\",\"authors\":\"Aroldo Pérez\",\"doi\":\"10.7153/fdc-2020-10-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We provide a suf fi cient condition for fi nite time blow up of the positive mild solution to the nonautonomous Cauchy problem of a reaction-diffusion system with distinct fractional diffusions. The proof is based on the reduction to an ordinary differential system by means of a comparison between the transition densities of the semigroups generated by the different fractional Laplacians. Moreover, we prove that this condition is also a suf fi cient condition for the blow up of a related nonautonomous fractional diffusion-convection-reaction system.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 给出了具有不同分数扩散的非自治柯西反应扩散系统正温和解有限时间爆破的一个充分条件。通过比较由不同分数阶拉普拉斯算子生成的半群的跃迁密度,将其简化为一个常微分系统,从而证明了这一定理。进一步证明了该条件也是相关非自治分数扩散-对流-反应体系爆破的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow up of nonautonomous fractional reaction-diffusion systems
. We provide a suf fi cient condition for fi nite time blow up of the positive mild solution to the nonautonomous Cauchy problem of a reaction-diffusion system with distinct fractional diffusions. The proof is based on the reduction to an ordinary differential system by means of a comparison between the transition densities of the semigroups generated by the different fractional Laplacians. Moreover, we prove that this condition is also a suf fi cient condition for the blow up of a related nonautonomous fractional diffusion-convection-reaction system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信