通过稀疏用户注释实现电影维度化

M. Becker, M. Baron, D. Kondermann, M. Bußler, V. Helzle
{"title":"通过稀疏用户注释实现电影维度化","authors":"M. Becker, M. Baron, D. Kondermann, M. Bußler, V. Helzle","doi":"10.1109/3DTV.2013.6676633","DOIUrl":null,"url":null,"abstract":"We present a workflow to semi-automatically create depth maps for monocular movie footage. Artists annotate relevant depth discontinuities in a single keyframe. Depth edges are then learned and predicted for the whole shot. We use structure from motion where possible for sparse depth cues, while the artist optionally provides scribbles to improve the intended visual effect. Finally, all three sources of information are combined via variational inpainting scheme. As the outcome of our method is artistic and cannot be evaluated quantitively, we apply our method to a current movie production, showing good results on different scenes. We further evaluate the depth edge localization compared to the “ground truth” provided by artists. To enable experimentation with our approach, we offer our source code.","PeriodicalId":111565,"journal":{"name":"2013 3DTV Vision Beyond Depth (3DTV-CON)","volume":"2135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Movie dimensionalization via sparse user annotations\",\"authors\":\"M. Becker, M. Baron, D. Kondermann, M. Bußler, V. Helzle\",\"doi\":\"10.1109/3DTV.2013.6676633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a workflow to semi-automatically create depth maps for monocular movie footage. Artists annotate relevant depth discontinuities in a single keyframe. Depth edges are then learned and predicted for the whole shot. We use structure from motion where possible for sparse depth cues, while the artist optionally provides scribbles to improve the intended visual effect. Finally, all three sources of information are combined via variational inpainting scheme. As the outcome of our method is artistic and cannot be evaluated quantitively, we apply our method to a current movie production, showing good results on different scenes. We further evaluate the depth edge localization compared to the “ground truth” provided by artists. To enable experimentation with our approach, we offer our source code.\",\"PeriodicalId\":111565,\"journal\":{\"name\":\"2013 3DTV Vision Beyond Depth (3DTV-CON)\",\"volume\":\"2135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 3DTV Vision Beyond Depth (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2013.6676633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 3DTV Vision Beyond Depth (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2013.6676633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个工作流来半自动地为单目电影素材创建深度图。美工在单个关键帧中注释相关的深度不连续。然后学习和预测整个镜头的深度边缘。我们在可能的情况下使用来自运动的结构作为稀疏的深度线索,而美工可以选择提供涂鸦来改善预期的视觉效果。最后,通过变分绘制方案将三种信息来源结合起来。由于我们的方法的结果是艺术的,不能定量评估,我们将我们的方法应用到当前的电影制作中,在不同的场景上都显示出良好的效果。与艺术家提供的“地面真相”相比,我们进一步评估深度边缘定位。为了能够对我们的方法进行实验,我们提供了源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movie dimensionalization via sparse user annotations
We present a workflow to semi-automatically create depth maps for monocular movie footage. Artists annotate relevant depth discontinuities in a single keyframe. Depth edges are then learned and predicted for the whole shot. We use structure from motion where possible for sparse depth cues, while the artist optionally provides scribbles to improve the intended visual effect. Finally, all three sources of information are combined via variational inpainting scheme. As the outcome of our method is artistic and cannot be evaluated quantitively, we apply our method to a current movie production, showing good results on different scenes. We further evaluate the depth edge localization compared to the “ground truth” provided by artists. To enable experimentation with our approach, we offer our source code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信