StatCache:一种高效准确的数据局部性分析的概率方法

Erik Berg, Erik Hagersten
{"title":"StatCache:一种高效准确的数据局部性分析的概率方法","authors":"Erik Berg, Erik Hagersten","doi":"10.1109/ISPASS.2004.1291352","DOIUrl":null,"url":null,"abstract":"The widening memory gap reduces performance of applications with poor data locality. Therefore, there is a need for methods to analyze data locality and help application optimization. In this paper we present StatCache, a novel sampling-based method for performing data-locality analysis on realistic workloads. StatCache is based on a probabilistic model of the cache, rather than a functional cache simulator. It uses statistics from a single run to accurately estimate miss ratios of fully-associative caches of arbitrary sizes and generate working-set graphs. We evaluate StatCache using the SPEC CPU2000 benchmarks and show that StatCache gives accurate results with a sampling rate as low as 10/sup -4/. We also provide a proof-of-concept implementation, and discuss potentially very fast implementation alternatives.","PeriodicalId":188291,"journal":{"name":"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"StatCache: a probabilistic approach to efficient and accurate data locality analysis\",\"authors\":\"Erik Berg, Erik Hagersten\",\"doi\":\"10.1109/ISPASS.2004.1291352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widening memory gap reduces performance of applications with poor data locality. Therefore, there is a need for methods to analyze data locality and help application optimization. In this paper we present StatCache, a novel sampling-based method for performing data-locality analysis on realistic workloads. StatCache is based on a probabilistic model of the cache, rather than a functional cache simulator. It uses statistics from a single run to accurately estimate miss ratios of fully-associative caches of arbitrary sizes and generate working-set graphs. We evaluate StatCache using the SPEC CPU2000 benchmarks and show that StatCache gives accurate results with a sampling rate as low as 10/sup -4/. We also provide a proof-of-concept implementation, and discuss potentially very fast implementation alternatives.\",\"PeriodicalId\":188291,\"journal\":{\"name\":\"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2004.1291352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2004.1291352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193

摘要

不断扩大的内存缺口降低了数据局部性差的应用程序的性能。因此,需要分析数据局部性并帮助应用程序优化的方法。在本文中,我们提出了StatCache,这是一种新颖的基于采样的方法,用于在实际工作负载上执行数据局域性分析。StatCache是基于缓存的概率模型,而不是功能性缓存模拟器。它使用单次运行的统计数据来准确估计任意大小的完全关联缓存的缺失率,并生成工作集图。我们使用SPEC CPU2000基准测试评估StatCache,并表明StatCache在采样率低至10/sup -4/的情况下给出准确的结果。我们还提供了一个概念验证实现,并讨论了可能非常快速的实现替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StatCache: a probabilistic approach to efficient and accurate data locality analysis
The widening memory gap reduces performance of applications with poor data locality. Therefore, there is a need for methods to analyze data locality and help application optimization. In this paper we present StatCache, a novel sampling-based method for performing data-locality analysis on realistic workloads. StatCache is based on a probabilistic model of the cache, rather than a functional cache simulator. It uses statistics from a single run to accurately estimate miss ratios of fully-associative caches of arbitrary sizes and generate working-set graphs. We evaluate StatCache using the SPEC CPU2000 benchmarks and show that StatCache gives accurate results with a sampling rate as low as 10/sup -4/. We also provide a proof-of-concept implementation, and discuss potentially very fast implementation alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信