外凸波纹管换热器的传热传质

Huaizhi Han, Bingxi Li, Yaning Zhang, Quan Zhu, Ruitian Yu
{"title":"外凸波纹管换热器的传热传质","authors":"Huaizhi Han, Bingxi Li, Yaning Zhang, Quan Zhu, Ruitian Yu","doi":"10.5772/INTECHOPEN.85494","DOIUrl":null,"url":null,"abstract":"Heat and mass transfer in outward convex corrugated tube heat exchangers is of significant importance for the optimization, fabrication, and application of outward convex corrugated tube heat exchangers. This chapter gives a deep investigation of the heat and mass transfer in outward convex corrugated tube heat exchangers. Based on the experimental setup developed, the performances of a novel outward convex corrugated tube heat exchanger are presented. Simulation methods are then used to detail the heat and mass transfer at tube side and shell side of the outward convex corrugated tube heat exchanger, and these include the flow structure, temperature distribution, and turbulence kinetic energy. Heat and mass transfer enhancements of the outward convex corrugated tube heat exchanger are also studied, and they are from tube side, shell side, and overall system aspects. Finally, multi-objective optimization of the outward convex corrugated tube heat exchanger is conducted to obtain the optimal performances through using Response Surface Methodology (RSM) and Non-dominated Sorting Genetic Algorithm (NSGA-II). Main conclusions and future outlook are then briefly stated and summarized. We firmly believe that the contents presented in this chapter can not only enrich the knowledge of heat exchangers but also develop methods for studying heat exchangers.","PeriodicalId":321588,"journal":{"name":"Heat and Mass Transfer - Advances in Science and Technology Applications","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat and Mass Transfer in Outward Convex Corrugated Tube Heat Exchangers\",\"authors\":\"Huaizhi Han, Bingxi Li, Yaning Zhang, Quan Zhu, Ruitian Yu\",\"doi\":\"10.5772/INTECHOPEN.85494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat and mass transfer in outward convex corrugated tube heat exchangers is of significant importance for the optimization, fabrication, and application of outward convex corrugated tube heat exchangers. This chapter gives a deep investigation of the heat and mass transfer in outward convex corrugated tube heat exchangers. Based on the experimental setup developed, the performances of a novel outward convex corrugated tube heat exchanger are presented. Simulation methods are then used to detail the heat and mass transfer at tube side and shell side of the outward convex corrugated tube heat exchanger, and these include the flow structure, temperature distribution, and turbulence kinetic energy. Heat and mass transfer enhancements of the outward convex corrugated tube heat exchanger are also studied, and they are from tube side, shell side, and overall system aspects. Finally, multi-objective optimization of the outward convex corrugated tube heat exchanger is conducted to obtain the optimal performances through using Response Surface Methodology (RSM) and Non-dominated Sorting Genetic Algorithm (NSGA-II). Main conclusions and future outlook are then briefly stated and summarized. We firmly believe that the contents presented in this chapter can not only enrich the knowledge of heat exchangers but also develop methods for studying heat exchangers.\",\"PeriodicalId\":321588,\"journal\":{\"name\":\"Heat and Mass Transfer - Advances in Science and Technology Applications\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat and Mass Transfer - Advances in Science and Technology Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.85494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer - Advances in Science and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

外凸波纹管换热器的传热传质问题对外凸波纹管换热器的优化、制造和应用具有重要意义。本章对外凸波纹管换热器的传热传质进行了深入的研究。在建立实验装置的基础上,介绍了一种新型外凸波纹管换热器的性能。采用数值模拟方法对外凸波纹管换热器管侧和壳侧的传热传质过程进行了详细分析,包括流动结构、温度分布和湍流动能。从管侧、壳侧和系统整体三个方面对外凸波纹管换热器的传热传质增强进行了研究。最后,利用响应面法(RSM)和非支配排序遗传算法(NSGA-II)对外凸波纹管换热器进行多目标优化,以获得最优性能。然后简要陈述和总结了主要结论和未来展望。我们坚信,本章所介绍的内容不仅可以丰富换热器的知识,而且可以发展换热器研究的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat and Mass Transfer in Outward Convex Corrugated Tube Heat Exchangers
Heat and mass transfer in outward convex corrugated tube heat exchangers is of significant importance for the optimization, fabrication, and application of outward convex corrugated tube heat exchangers. This chapter gives a deep investigation of the heat and mass transfer in outward convex corrugated tube heat exchangers. Based on the experimental setup developed, the performances of a novel outward convex corrugated tube heat exchanger are presented. Simulation methods are then used to detail the heat and mass transfer at tube side and shell side of the outward convex corrugated tube heat exchanger, and these include the flow structure, temperature distribution, and turbulence kinetic energy. Heat and mass transfer enhancements of the outward convex corrugated tube heat exchanger are also studied, and they are from tube side, shell side, and overall system aspects. Finally, multi-objective optimization of the outward convex corrugated tube heat exchanger is conducted to obtain the optimal performances through using Response Surface Methodology (RSM) and Non-dominated Sorting Genetic Algorithm (NSGA-II). Main conclusions and future outlook are then briefly stated and summarized. We firmly believe that the contents presented in this chapter can not only enrich the knowledge of heat exchangers but also develop methods for studying heat exchangers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信