不同模型在服装图像分类研究中的比较

Jiacheng Luo
{"title":"不同模型在服装图像分类研究中的比较","authors":"Jiacheng Luo","doi":"10.1145/3421766.3421873","DOIUrl":null,"url":null,"abstract":"In this paper, we employed three machine learning models, i.e., pure 5-layer convolutional neural network, VGG-16 model, and XGBoost algorithm model. We trained and tested these models on the Fashion-MNIST dataset. By comparing the classification accuracy and the training time, the results show that 1) the pure convolutional neural network is a very effective method for clothing images classification; 2) The complex structure of VGG 16 increases the training time, and the risk of overfitting; 3) XGBoost does not show the efficiency benefits of multi-threading on this issue.","PeriodicalId":360184,"journal":{"name":"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Different Models for Clothing Images Classification Studies\",\"authors\":\"Jiacheng Luo\",\"doi\":\"10.1145/3421766.3421873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we employed three machine learning models, i.e., pure 5-layer convolutional neural network, VGG-16 model, and XGBoost algorithm model. We trained and tested these models on the Fashion-MNIST dataset. By comparing the classification accuracy and the training time, the results show that 1) the pure convolutional neural network is a very effective method for clothing images classification; 2) The complex structure of VGG 16 increases the training time, and the risk of overfitting; 3) XGBoost does not show the efficiency benefits of multi-threading on this issue.\",\"PeriodicalId\":360184,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421766.3421873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421766.3421873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们采用了纯5层卷积神经网络、VGG-16模型和XGBoost算法模型三种机器学习模型。我们在Fashion-MNIST数据集上训练和测试了这些模型。通过对分类准确率和训练时间的比较,结果表明:1)纯卷积神经网络是一种非常有效的服装图像分类方法;2) VGG 16的复杂结构增加了训练时间和过拟合风险;3) XGBoost在这个问题上没有显示多线程的效率优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Different Models for Clothing Images Classification Studies
In this paper, we employed three machine learning models, i.e., pure 5-layer convolutional neural network, VGG-16 model, and XGBoost algorithm model. We trained and tested these models on the Fashion-MNIST dataset. By comparing the classification accuracy and the training time, the results show that 1) the pure convolutional neural network is a very effective method for clothing images classification; 2) The complex structure of VGG 16 increases the training time, and the risk of overfitting; 3) XGBoost does not show the efficiency benefits of multi-threading on this issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信