求助PDF
{"title":"半空间上Hartree-Fock方程的Liouville型定理","authors":"Xiaomei Chen, Xiaohui Yu","doi":"10.3934/cpaa.2022050","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{align*} \\begin{cases} - \\Delta {u_i}(y) = \\sum\\limits_{j = 1}^n {{\\int _{\\partial \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(\\bar x, 0){F_1}({u_j}(\\bar x, 0))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}d\\bar x{f_2}({u_i}(y)) \\\\ \\qquad \\qquad \\qquad + \\sum\\limits_{j = 1}^n {{\\int _{\\partial \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(\\bar x, 0){F_2}({u_i}(\\bar x, 0))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}d\\bar x{f_1}({u_j}(y)), \\ y \\in \\mathbb{R}_ + ^N, \\hfill \\\\ \\frac{{\\partial {u_i}}} {{\\partial \\nu }}(\\bar x, 0) = \\sum\\limits_{j = 1}^n {{\\int _{ \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}dy{g_2}({u_i}(\\bar x, 0)) \\\\ \\qquad \\qquad \\qquad + \\sum\\limits_{j = 1}^n {{\\int _{ \\mathbb{R}_ + ^N}}} \\frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\\bar x, 0) - y{|^{N - \\alpha }}}}dy{g_1}({u_j}(\\bar x, 0)), \\quad \\quad(\\bar x, 0) \\in \\partial \\mathbb{R}_ + ^N, \\end{cases} \\end{align*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{R}_+^N = \\{x\\in{\\mathbb{R}^N}: x_N > 0\\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\\end{document}</tex-math></inline-formula> are some nonlinear functions. Under some assumptions on the nonlinear functions <inline-formula><tex-math id=\"M2\">\\begin{document}$ F, G, f, g $\\end{document}</tex-math></inline-formula>, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville type theorem for Hartree-Fock Equation on half space\",\"authors\":\"Xiaomei Chen, Xiaohui Yu\",\"doi\":\"10.3934/cpaa.2022050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{align*} \\\\begin{cases} - \\\\Delta {u_i}(y) = \\\\sum\\\\limits_{j = 1}^n {{\\\\int _{\\\\partial \\\\mathbb{R}_ + ^N}}} \\\\frac{{{u_j}(\\\\bar x, 0){F_1}({u_j}(\\\\bar x, 0))}} {{|(\\\\bar x, 0) - y{|^{N - \\\\alpha }}}}d\\\\bar x{f_2}({u_i}(y)) \\\\\\\\ \\\\qquad \\\\qquad \\\\qquad + \\\\sum\\\\limits_{j = 1}^n {{\\\\int _{\\\\partial \\\\mathbb{R}_ + ^N}}} \\\\frac{{{u_j}(\\\\bar x, 0){F_2}({u_i}(\\\\bar x, 0))}} {{|(\\\\bar x, 0) - y{|^{N - \\\\alpha }}}}d\\\\bar x{f_1}({u_j}(y)), \\\\ y \\\\in \\\\mathbb{R}_ + ^N, \\\\hfill \\\\\\\\ \\\\frac{{\\\\partial {u_i}}} {{\\\\partial \\\\nu }}(\\\\bar x, 0) = \\\\sum\\\\limits_{j = 1}^n {{\\\\int _{ \\\\mathbb{R}_ + ^N}}} \\\\frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\\\\bar x, 0) - y{|^{N - \\\\alpha }}}}dy{g_2}({u_i}(\\\\bar x, 0)) \\\\\\\\ \\\\qquad \\\\qquad \\\\qquad + \\\\sum\\\\limits_{j = 1}^n {{\\\\int _{ \\\\mathbb{R}_ + ^N}}} \\\\frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\\\\bar x, 0) - y{|^{N - \\\\alpha }}}}dy{g_1}({u_j}(\\\\bar x, 0)), \\\\quad \\\\quad(\\\\bar x, 0) \\\\in \\\\partial \\\\mathbb{R}_ + ^N, \\\\end{cases} \\\\end{align*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathbb{R}_+^N = \\\\{x\\\\in{\\\\mathbb{R}^N}: x_N > 0\\\\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\\\\end{document}</tex-math></inline-formula> are some nonlinear functions. Under some assumptions on the nonlinear functions <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ F, G, f, g $\\\\end{document}</tex-math></inline-formula>, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space \begin{document}$ \begin{align*} \begin{cases} - \Delta {u_i}(y) = \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_1}({u_j}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_2}({u_i}(y)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_2}({u_i}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_1}({u_j}(y)), \ y \in \mathbb{R}_ + ^N, \hfill \\ \frac{{\partial {u_i}}} {{\partial \nu }}(\bar x, 0) = \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_2}({u_i}(\bar x, 0)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_1}({u_j}(\bar x, 0)), \quad \quad(\bar x, 0) \in \partial \mathbb{R}_ + ^N, \end{cases} \end{align*} $\end{document} where \begin{document}$ \mathbb{R}_+^N = \{x\in{\mathbb{R}^N}: x_N > 0\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions \begin{document}$ F, G, f, g $\end{document}, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville type theorem for Hartree-Fock Equation on half space
In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space
\begin{document}$ \begin{align*} \begin{cases} - \Delta {u_i}(y) = \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_1}({u_j}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_2}({u_i}(y)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{\partial \mathbb{R}_ + ^N}}} \frac{{{u_j}(\bar x, 0){F_2}({u_i}(\bar x, 0))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}d\bar x{f_1}({u_j}(y)), \ y \in \mathbb{R}_ + ^N, \hfill \\ \frac{{\partial {u_i}}} {{\partial \nu }}(\bar x, 0) = \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_2}({u_i}(\bar x, 0)) \\ \qquad \qquad \qquad + \sum\limits_{j = 1}^n {{\int _{ \mathbb{R}_ + ^N}}} \frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(\bar x, 0) - y{|^{N - \alpha }}}}dy{g_1}({u_j}(\bar x, 0)), \quad \quad(\bar x, 0) \in \partial \mathbb{R}_ + ^N, \end{cases} \end{align*} $\end{document}
where \begin{document}$ \mathbb{R}_+^N = \{x\in{\mathbb{R}^N}: x_N > 0\}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $\end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions \begin{document}$ F, G, f, g $\end{document} , we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.