教学系统采用了皮尔森公司的比喻技术

Rimbun Siringoringo, J. Jamaluddin, Gortab Lumbantoruan
{"title":"教学系统采用了皮尔森公司的比喻技术","authors":"Rimbun Siringoringo, J. Jamaluddin, Gortab Lumbantoruan","doi":"10.46880/mtk.v7i1.257","DOIUrl":null,"url":null,"abstract":"The growth of e-commerce has resulted in massive product information and huge volumes of data. This results in data overload problems. In the case of e-commerce, consumers or users spend a lot of time choosing the goods they need. The urgent question to be answered at this time is how to provide solutions related to intelligent information restrictions so that the existing information is truly information that is by preferences and needs. This research performs information filtering by applying the singular value decomposition method and the Pearson similarity technique to the book recommendation system. The data used is the Book-Crossing Dataset which is the reference dataset for many research recommendation systems. The resulting recommendations are then compared with e-commerce recommendations such as amazom.com. Based on the results of the study obtained data that the results of the recommendations in this study are very good and accurate.","PeriodicalId":384219,"journal":{"name":"METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SISTEM PEREKOMENDASI DENGAN SINGULAR VALUE DECOMPOSITION DAN TEKNIK SIMILARITAS PEARSON CORRELATION\",\"authors\":\"Rimbun Siringoringo, J. Jamaluddin, Gortab Lumbantoruan\",\"doi\":\"10.46880/mtk.v7i1.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of e-commerce has resulted in massive product information and huge volumes of data. This results in data overload problems. In the case of e-commerce, consumers or users spend a lot of time choosing the goods they need. The urgent question to be answered at this time is how to provide solutions related to intelligent information restrictions so that the existing information is truly information that is by preferences and needs. This research performs information filtering by applying the singular value decomposition method and the Pearson similarity technique to the book recommendation system. The data used is the Book-Crossing Dataset which is the reference dataset for many research recommendation systems. The resulting recommendations are then compared with e-commerce recommendations such as amazom.com. Based on the results of the study obtained data that the results of the recommendations in this study are very good and accurate.\",\"PeriodicalId\":384219,\"journal\":{\"name\":\"METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46880/mtk.v7i1.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46880/mtk.v7i1.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子商务的发展带来了海量的产品信息和海量的数据。这将导致数据过载问题。在电子商务的情况下,消费者或用户花费大量的时间来选择他们需要的商品。如何提供与智能信息限制相关的解决方案,使现有的信息真正成为由偏好和需求决定的信息,是此时迫切需要回答的问题。本研究将奇异值分解方法和皮尔逊相似度技术应用到图书推荐系统中进行信息过滤。使用的数据是Book-Crossing Dataset,这是许多研究推荐系统的参考数据集。然后将得到的推荐与亚马逊等电子商务推荐进行比较。根据所获得的研究结果数据表明,本研究建议的结果是非常好的和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SISTEM PEREKOMENDASI DENGAN SINGULAR VALUE DECOMPOSITION DAN TEKNIK SIMILARITAS PEARSON CORRELATION
The growth of e-commerce has resulted in massive product information and huge volumes of data. This results in data overload problems. In the case of e-commerce, consumers or users spend a lot of time choosing the goods they need. The urgent question to be answered at this time is how to provide solutions related to intelligent information restrictions so that the existing information is truly information that is by preferences and needs. This research performs information filtering by applying the singular value decomposition method and the Pearson similarity technique to the book recommendation system. The data used is the Book-Crossing Dataset which is the reference dataset for many research recommendation systems. The resulting recommendations are then compared with e-commerce recommendations such as amazom.com. Based on the results of the study obtained data that the results of the recommendations in this study are very good and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信