{"title":"利用增强通道状态信息的深度学习网络进行人类活动识别","authors":"Zhenguo Shi, J. A. Zhang, R. Xu, Gengfa Fang","doi":"10.1109/GLOCOMW.2018.8644435","DOIUrl":null,"url":null,"abstract":"Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Human Activity Recognition Using Deep Learning Networks with Enhanced Channel State Information\",\"authors\":\"Zhenguo Shi, J. A. Zhang, R. Xu, Gengfa Fang\",\"doi\":\"10.1109/GLOCOMW.2018.8644435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme.\",\"PeriodicalId\":348924,\"journal\":{\"name\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2018.8644435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Activity Recognition Using Deep Learning Networks with Enhanced Channel State Information
Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme.