利用增强通道状态信息的深度学习网络进行人类活动识别

Zhenguo Shi, J. A. Zhang, R. Xu, Gengfa Fang
{"title":"利用增强通道状态信息的深度学习网络进行人类活动识别","authors":"Zhenguo Shi, J. A. Zhang, R. Xu, Gengfa Fang","doi":"10.1109/GLOCOMW.2018.8644435","DOIUrl":null,"url":null,"abstract":"Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Human Activity Recognition Using Deep Learning Networks with Enhanced Channel State Information\",\"authors\":\"Zhenguo Shi, J. A. Zhang, R. Xu, Gengfa Fang\",\"doi\":\"10.1109/GLOCOMW.2018.8644435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme.\",\"PeriodicalId\":348924,\"journal\":{\"name\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2018.8644435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

通道状态信息(CSI)被广泛用于无设备的人体活动识别。在动态复杂的环境中,特征提取仍然是最具挑战性的任务之一。在本文中,我们提出了一种使用具有增强通道状态信息(DLN-eCSI)的深度学习网络的人类活动识别方案。本文提出了一种CSI特征增强方案(CFES),包括背景还原和相关特征增强两个模块,对输入到DLN的数据进行预处理。在使用CFES对信号进行清洗和压缩后,应用递归神经网络(RNN)自动提取深层特征,然后使用softmax回归算法进行活动分类。大量的实验验证了所提出方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Activity Recognition Using Deep Learning Networks with Enhanced Channel State Information
Channel State Information (CSI) is widely used for device free human activity recognition. Feature extraction remains as one of the most challenging tasks in a dynamic and complex environment. In this paper, we propose a human activity recognition scheme using Deep Learning Networks with enhanced Channel State information (DLN-eCSI). We develop a CSI feature enhancement scheme (CFES), including two modules of background reduction and correlation feature enhancement, for preprocessing the data input to the DLN. After cleaning and compressing the signals using CFES, we apply the recurrent neural networking (RNN) to automatically extract deeper features and then the softmax regression algorithm for activity classification. Extensive experiments are conducted to validate the effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信