{"title":"叠置地震群的Gutenberg-Richter b值分析及其在Cooke 4金矿的应用","authors":"Julius Ketelhodt, Dakalo Ligaraba, R. Durrheim","doi":"10.36487/ACG_REP/1952_25_DURRHEIM","DOIUrl":null,"url":null,"abstract":"The b-value of the Gutenberg-Richter frequency-magnitude relationship is an indicator of rock failure processes. Near-real-time analysis of the b-value has the potential to mitigate the risk posed by rockbursts, for example, by adjusting the geometry, sequence and rate of mining; or evaluating the re-entry time following a large seismic event. There are two main approaches to selecting a data set for b-value analysis: (i) select seismic events that fall within polygons or polyhedra associated with particular working places or seismic sources (e.g. a development end, stope or fault); or (ii) select seismic events that occur in the vicinity of each node of a 2D or 3D mesh that covers the entire region of interest. \nChallenges include the inevitable trade-off between statistical stability and space-time resolution, and overlaps of clusters of seismic events that arise from different sources. We wrote a Matlab code “Bplot” to conduct numerical simulations to investigate strategies to improve the resolution and reliability of b-value analysis. Bplot was also used to analyse seismicity during the extraction of the shaft pillar at Cooke 4 gold mine. Approximately 450 000 events, recorded from July 2011 to October 2011, were used to map spatial and temporal variations in the b-value. We find lower b-values close to the stope face. We attribute the higher b-value ahead of the stope to the occurrence of numerous small events caused by the fracture of intact rock by high stresses ahead of the mining front; while the relative increase in the number of larger events close to the face is considered to be the result of the growth and coalescence of these fractures.","PeriodicalId":213743,"journal":{"name":"Proceedings of the Ninth International Conference on Deep and High Stress Mining","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the Gutenberg-Richter b-values of overlapping seismic clusters with application to Cooke 4 gold mine\",\"authors\":\"Julius Ketelhodt, Dakalo Ligaraba, R. Durrheim\",\"doi\":\"10.36487/ACG_REP/1952_25_DURRHEIM\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The b-value of the Gutenberg-Richter frequency-magnitude relationship is an indicator of rock failure processes. Near-real-time analysis of the b-value has the potential to mitigate the risk posed by rockbursts, for example, by adjusting the geometry, sequence and rate of mining; or evaluating the re-entry time following a large seismic event. There are two main approaches to selecting a data set for b-value analysis: (i) select seismic events that fall within polygons or polyhedra associated with particular working places or seismic sources (e.g. a development end, stope or fault); or (ii) select seismic events that occur in the vicinity of each node of a 2D or 3D mesh that covers the entire region of interest. \\nChallenges include the inevitable trade-off between statistical stability and space-time resolution, and overlaps of clusters of seismic events that arise from different sources. We wrote a Matlab code “Bplot” to conduct numerical simulations to investigate strategies to improve the resolution and reliability of b-value analysis. Bplot was also used to analyse seismicity during the extraction of the shaft pillar at Cooke 4 gold mine. Approximately 450 000 events, recorded from July 2011 to October 2011, were used to map spatial and temporal variations in the b-value. We find lower b-values close to the stope face. We attribute the higher b-value ahead of the stope to the occurrence of numerous small events caused by the fracture of intact rock by high stresses ahead of the mining front; while the relative increase in the number of larger events close to the face is considered to be the result of the growth and coalescence of these fractures.\",\"PeriodicalId\":213743,\"journal\":{\"name\":\"Proceedings of the Ninth International Conference on Deep and High Stress Mining\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth International Conference on Deep and High Stress Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36487/ACG_REP/1952_25_DURRHEIM\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth International Conference on Deep and High Stress Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36487/ACG_REP/1952_25_DURRHEIM","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the Gutenberg-Richter b-values of overlapping seismic clusters with application to Cooke 4 gold mine
The b-value of the Gutenberg-Richter frequency-magnitude relationship is an indicator of rock failure processes. Near-real-time analysis of the b-value has the potential to mitigate the risk posed by rockbursts, for example, by adjusting the geometry, sequence and rate of mining; or evaluating the re-entry time following a large seismic event. There are two main approaches to selecting a data set for b-value analysis: (i) select seismic events that fall within polygons or polyhedra associated with particular working places or seismic sources (e.g. a development end, stope or fault); or (ii) select seismic events that occur in the vicinity of each node of a 2D or 3D mesh that covers the entire region of interest.
Challenges include the inevitable trade-off between statistical stability and space-time resolution, and overlaps of clusters of seismic events that arise from different sources. We wrote a Matlab code “Bplot” to conduct numerical simulations to investigate strategies to improve the resolution and reliability of b-value analysis. Bplot was also used to analyse seismicity during the extraction of the shaft pillar at Cooke 4 gold mine. Approximately 450 000 events, recorded from July 2011 to October 2011, were used to map spatial and temporal variations in the b-value. We find lower b-values close to the stope face. We attribute the higher b-value ahead of the stope to the occurrence of numerous small events caused by the fracture of intact rock by high stresses ahead of the mining front; while the relative increase in the number of larger events close to the face is considered to be the result of the growth and coalescence of these fractures.