用于物体识别的可调节精度和尺寸的虚拟触觉传感器

Ghazal Rouhafzay, A. Crétu
{"title":"用于物体识别的可调节精度和尺寸的虚拟触觉传感器","authors":"Ghazal Rouhafzay, A. Crétu","doi":"10.1109/CIVEMSA.2018.8439966","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for intelligent tactile object recognition with focus on the influence of the size and precision of tactile sensors on the recognition rate. To avoid probing the entire surface of objects which is a time-consuming task and considering the fact that psychological studies seem to support the idea that visual salient points are also salient by touch, we have determined the probing locations using an enhanced model of visual attention. A virtual tactile sensor based on the working principle of piezo-resistive sensors is simulated to capture tactile information. Four classifiers are then trained to learn the tactile properties of virtual objects belonging to four classes and are tested over new objects belonging to the same categories. The K-nearest neighbors algorithm outperforms all the other tested classifiers when the imprints are captured using large sensors of size 32 × 32 with low precision. An accuracy of 95.18% is achieved for this case.","PeriodicalId":305399,"journal":{"name":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Virtual Tactile Sensor with Adjustable Precision and Size for Object Recognition\",\"authors\":\"Ghazal Rouhafzay, A. Crétu\",\"doi\":\"10.1109/CIVEMSA.2018.8439966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework for intelligent tactile object recognition with focus on the influence of the size and precision of tactile sensors on the recognition rate. To avoid probing the entire surface of objects which is a time-consuming task and considering the fact that psychological studies seem to support the idea that visual salient points are also salient by touch, we have determined the probing locations using an enhanced model of visual attention. A virtual tactile sensor based on the working principle of piezo-resistive sensors is simulated to capture tactile information. Four classifiers are then trained to learn the tactile properties of virtual objects belonging to four classes and are tested over new objects belonging to the same categories. The K-nearest neighbors algorithm outperforms all the other tested classifiers when the imprints are captured using large sensors of size 32 × 32 with low precision. An accuracy of 95.18% is achieved for this case.\",\"PeriodicalId\":305399,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2018.8439966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2018.8439966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种智能触觉物体识别框架,重点是触觉传感器的尺寸和精度对识别率的影响。为了避免费时地探测物体的整个表面,并考虑到心理学研究似乎支持视觉突出点也是触觉突出点的观点,我们使用增强型视觉注意力模型确定了探测位置。我们模拟了一个基于压阻传感器工作原理的虚拟触觉传感器来捕捉触觉信息。然后训练四个分类器来学习属于四个类别的虚拟物体的触觉特性,并对属于相同类别的新物体进行测试。当使用尺寸为 32 × 32 的大型传感器捕获低精度印记时,K 最近邻算法优于所有其他测试分类器。在这种情况下,准确率达到了 95.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Virtual Tactile Sensor with Adjustable Precision and Size for Object Recognition
This paper presents a framework for intelligent tactile object recognition with focus on the influence of the size and precision of tactile sensors on the recognition rate. To avoid probing the entire surface of objects which is a time-consuming task and considering the fact that psychological studies seem to support the idea that visual salient points are also salient by touch, we have determined the probing locations using an enhanced model of visual attention. A virtual tactile sensor based on the working principle of piezo-resistive sensors is simulated to capture tactile information. Four classifiers are then trained to learn the tactile properties of virtual objects belonging to four classes and are tested over new objects belonging to the same categories. The K-nearest neighbors algorithm outperforms all the other tested classifiers when the imprints are captured using large sensors of size 32 × 32 with low precision. An accuracy of 95.18% is achieved for this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信