利用二值分类图设计节能决策树忆阻交叉电路

Pranav Sinha, Sunny Raj
{"title":"利用二值分类图设计节能决策树忆阻交叉电路","authors":"Pranav Sinha, Sunny Raj","doi":"10.1145/3508352.3549448","DOIUrl":null,"url":null,"abstract":"We propose a method to design in-memory, energy-efficient, and compact memristor crossbar circuits for implementing decision trees using flow-based computing. We develop a new tool called binary classification graph, which is equivalent to decision trees in accuracy but uses bit values of input features to make decisions instead of thresholds. Our proposed design is resilient to manufacturing errors and can scale to large crossbar sizes due to the utilization of sneak paths in computations. Our design uses zero transistor and one memristor (0T1R) crossbars with only two resistance states of high and low, which makes it resilient to resistance drift and radiation degradation. We test the performance of our designs on multiple standard machine learning datasets and show that our method utilizes circuits of size 5.23 × 10−3 mm2 and uses 20.5 pJ per decision, and outperforms state-of-the-art decision tree acceleration algorithms on these metrics.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"02 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Energy-Efficient Decision Tree Memristor Crossbar Circuits using Binary Classification Graphs\",\"authors\":\"Pranav Sinha, Sunny Raj\",\"doi\":\"10.1145/3508352.3549448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to design in-memory, energy-efficient, and compact memristor crossbar circuits for implementing decision trees using flow-based computing. We develop a new tool called binary classification graph, which is equivalent to decision trees in accuracy but uses bit values of input features to make decisions instead of thresholds. Our proposed design is resilient to manufacturing errors and can scale to large crossbar sizes due to the utilization of sneak paths in computations. Our design uses zero transistor and one memristor (0T1R) crossbars with only two resistance states of high and low, which makes it resilient to resistance drift and radiation degradation. We test the performance of our designs on multiple standard machine learning datasets and show that our method utilizes circuits of size 5.23 × 10−3 mm2 and uses 20.5 pJ per decision, and outperforms state-of-the-art decision tree acceleration algorithms on these metrics.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"02 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种方法来设计内存,节能,紧凑的记忆电阻交叉电路实现决策树使用基于流的计算。我们开发了一种新的工具,称为二元分类图,它在精度上相当于决策树,但使用输入特征的位值而不是阈值来进行决策。我们提出的设计对制造错误具有弹性,并且由于在计算中使用了偷偷路径,可以扩展到大的交叉杆尺寸。我们的设计采用零晶体管和一个忆阻器(0T1R)横条,只有高和低两种电阻状态,这使得它具有抗电阻漂移和辐射退化的能力。我们在多个标准机器学习数据集上测试了我们设计的性能,并表明我们的方法使用5.23 × 10−3 mm2的电路,每个决策使用20.5 pJ,并且在这些指标上优于最先进的决策树加速算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Energy-Efficient Decision Tree Memristor Crossbar Circuits using Binary Classification Graphs
We propose a method to design in-memory, energy-efficient, and compact memristor crossbar circuits for implementing decision trees using flow-based computing. We develop a new tool called binary classification graph, which is equivalent to decision trees in accuracy but uses bit values of input features to make decisions instead of thresholds. Our proposed design is resilient to manufacturing errors and can scale to large crossbar sizes due to the utilization of sneak paths in computations. Our design uses zero transistor and one memristor (0T1R) crossbars with only two resistance states of high and low, which makes it resilient to resistance drift and radiation degradation. We test the performance of our designs on multiple standard machine learning datasets and show that our method utilizes circuits of size 5.23 × 10−3 mm2 and uses 20.5 pJ per decision, and outperforms state-of-the-art decision tree acceleration algorithms on these metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信