D. Lokshtanov, P. Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese Philip, Saket Saurabh
{"title":"2-锦标赛中反馈顶点集的逼近","authors":"D. Lokshtanov, P. Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese Philip, Saket Saurabh","doi":"10.1145/3446969","DOIUrl":null,"url":null,"abstract":"A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T − S is acyclic. We consider the Feedback Vertex Set problem in tournaments. Here, the input is a tournament T and a weight function w : V(T) → N, and the task is to find a feedback vertex set S in T minimizing w(S) = ∑v∈S w(v). Rounding optimal solutions to the natural LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this article, we give the first polynomial time factor 2-approximation algorithm for this problem. Assuming the Unique Games Conjecture, this is the best possible approximation ratio achievable in polynomial time.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"2-Approximating Feedback Vertex Set in Tournaments\",\"authors\":\"D. Lokshtanov, P. Misra, Joydeep Mukherjee, Fahad Panolan, Geevarghese Philip, Saket Saurabh\",\"doi\":\"10.1145/3446969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T − S is acyclic. We consider the Feedback Vertex Set problem in tournaments. Here, the input is a tournament T and a weight function w : V(T) → N, and the task is to find a feedback vertex set S in T minimizing w(S) = ∑v∈S w(v). Rounding optimal solutions to the natural LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this article, we give the first polynomial time factor 2-approximation algorithm for this problem. Assuming the Unique Games Conjecture, this is the best possible approximation ratio achievable in polynomial time.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3446969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2-Approximating Feedback Vertex Set in Tournaments
A tournament is a directed graph T such that every pair of vertices is connected by an arc. A feedback vertex set is a set S of vertices in T such that T − S is acyclic. We consider the Feedback Vertex Set problem in tournaments. Here, the input is a tournament T and a weight function w : V(T) → N, and the task is to find a feedback vertex set S in T minimizing w(S) = ∑v∈S w(v). Rounding optimal solutions to the natural LP-relaxation of this problem yields a simple 3-approximation algorithm. This has been improved to 2.5 by Cai et al. [SICOMP 2000], and subsequently to 7/3 by Mnich et al. [ESA 2016]. In this article, we give the first polynomial time factor 2-approximation algorithm for this problem. Assuming the Unique Games Conjecture, this is the best possible approximation ratio achievable in polynomial time.