求解具有跳跃条件的两区间Sturm-Liouville问题的广义有限差分法

S. Çavuşoğlu, O. Mukhtarov
{"title":"求解具有跳跃条件的两区间Sturm-Liouville问题的广义有限差分法","authors":"S. Çavuşoğlu, O. Mukhtarov","doi":"10.1063/5.0115479","DOIUrl":null,"url":null,"abstract":"We consider a Sturm-Liouville problem defined on two disjoint intervals\n together with additional jump conditions across the common endpoint of these\n intervals. Based on Finite Difference Method (FDM) we have developed a new\n tecnique for solving such type nonstandard boundary value problems (BVP). To\n show applicability and effectiveness of the proposed generalization of FDM,\n we solved a simple but illustrative example. The obtained numerical\n solutions are graphically compared with the corresponding exact solutions.","PeriodicalId":383729,"journal":{"name":"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized finite difference method for solving two-interval Sturm-Liouville problems with jump conditions\",\"authors\":\"S. Çavuşoğlu, O. Mukhtarov\",\"doi\":\"10.1063/5.0115479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Sturm-Liouville problem defined on two disjoint intervals\\n together with additional jump conditions across the common endpoint of these\\n intervals. Based on Finite Difference Method (FDM) we have developed a new\\n tecnique for solving such type nonstandard boundary value problems (BVP). To\\n show applicability and effectiveness of the proposed generalization of FDM,\\n we solved a simple but illustrative example. The obtained numerical\\n solutions are graphically compared with the corresponding exact solutions.\",\"PeriodicalId\":383729,\"journal\":{\"name\":\"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0115479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0115479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个Sturm-Liouville问题,该问题定义在两个不相交的区间上,并具有跨越这些区间公共端点的附加跳跃条件。基于有限差分法(FDM),提出了一种求解这类非标准边值问题的新方法。为了证明所提出的FDM泛化方法的适用性和有效性,我们解决了一个简单但具有说明性的例子。得到的数值解与相应的精确解进行了图解比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized finite difference method for solving two-interval Sturm-Liouville problems with jump conditions
We consider a Sturm-Liouville problem defined on two disjoint intervals together with additional jump conditions across the common endpoint of these intervals. Based on Finite Difference Method (FDM) we have developed a new tecnique for solving such type nonstandard boundary value problems (BVP). To show applicability and effectiveness of the proposed generalization of FDM, we solved a simple but illustrative example. The obtained numerical solutions are graphically compared with the corresponding exact solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信