基于单特征向量的虹膜识别

A. Basit, M. Javed, M. A. Anjum
{"title":"基于单特征向量的虹膜识别","authors":"A. Basit, M. Javed, M. A. Anjum","doi":"10.1109/ICICT.2005.1598567","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. The system initially detects boundaries of iris, and then unwraps it into rectangular strip. A single vector is obtained corresponding to maximum eigen value and it is used as distinct feature of the iris. In the next step training is done and recognition decision is carried out by comparing the Euclidean distances with other feature vectors which determine whether two irises are similar or not. The results show that the success rate of the proposed method is 95.91%.","PeriodicalId":276741,"journal":{"name":"2005 International Conference on Information and Communication Technologies","volume":"93 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iris Recognition Using Single Feature Vector\",\"authors\":\"A. Basit, M. Javed, M. A. Anjum\",\"doi\":\"10.1109/ICICT.2005.1598567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. The system initially detects boundaries of iris, and then unwraps it into rectangular strip. A single vector is obtained corresponding to maximum eigen value and it is used as distinct feature of the iris. In the next step training is done and recognition decision is carried out by comparing the Euclidean distances with other feature vectors which determine whether two irises are similar or not. The results show that the success rate of the proposed method is 95.91%.\",\"PeriodicalId\":276741,\"journal\":{\"name\":\"2005 International Conference on Information and Communication Technologies\",\"volume\":\"93 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2005.1598567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2005.1598567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于虹膜形态的高效身份识别方法。该系统首先检测虹膜的边界,然后将其展开成矩形条带。得到最大特征值对应的单个向量作为虹膜的鲜明特征。下一步,通过将欧几里德距离与其他特征向量进行比较来进行训练和识别决策,这些特征向量确定两个虹膜是否相似。结果表明,该方法的成功率为95.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iris Recognition Using Single Feature Vector
In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. The system initially detects boundaries of iris, and then unwraps it into rectangular strip. A single vector is obtained corresponding to maximum eigen value and it is used as distinct feature of the iris. In the next step training is done and recognition decision is carried out by comparing the Euclidean distances with other feature vectors which determine whether two irises are similar or not. The results show that the success rate of the proposed method is 95.91%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信