用3D加速度传感器识别异常运动,以识别癫痫发作

Q1 Mathematics
José R. Villar , Manuel Menéndez , Enrique de la Cal , Javier Sedano , Víctor M. González
{"title":"用3D加速度传感器识别异常运动,以识别癫痫发作","authors":"José R. Villar ,&nbsp;Manuel Menéndez ,&nbsp;Enrique de la Cal ,&nbsp;Javier Sedano ,&nbsp;Víctor M. González","doi":"10.1016/j.jal.2016.11.024","DOIUrl":null,"url":null,"abstract":"<div><p>Human-activity recognition and seizure-detection techniques have gathered pace with the widespread availability of wearable devices. A study of the literature shows various studies for 3D accelerometer-based seizure detection that describe the selection of acceleration variables and controlled transformations, while discarding the remaining input variable contributions. The aim of this research is to evaluate feature extraction based on different techniques and with the advantage of an overview of all information on the problem. Three feature extraction techniques – namely, Locally Linear Embedding, Principal Component Analysis (PCA) and a Distance-Based PCA – are analyzed and their outcomes compared against K-Nearest Neighbor and Decision Trees. A realistic experimentation simulating epileptic mioclonic convulsions was performed. The PCA-based methods were found to produce solutions that managed the problem perfectly well, either learning specific models for each individual or learning generalized models.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"24 ","pages":"Pages 54-61"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.024","citationCount":"11","resultStr":"{\"title\":\"Identification of abnormal movements with 3D accelerometer sensors for seizure recognition\",\"authors\":\"José R. Villar ,&nbsp;Manuel Menéndez ,&nbsp;Enrique de la Cal ,&nbsp;Javier Sedano ,&nbsp;Víctor M. González\",\"doi\":\"10.1016/j.jal.2016.11.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human-activity recognition and seizure-detection techniques have gathered pace with the widespread availability of wearable devices. A study of the literature shows various studies for 3D accelerometer-based seizure detection that describe the selection of acceleration variables and controlled transformations, while discarding the remaining input variable contributions. The aim of this research is to evaluate feature extraction based on different techniques and with the advantage of an overview of all information on the problem. Three feature extraction techniques – namely, Locally Linear Embedding, Principal Component Analysis (PCA) and a Distance-Based PCA – are analyzed and their outcomes compared against K-Nearest Neighbor and Decision Trees. A realistic experimentation simulating epileptic mioclonic convulsions was performed. The PCA-based methods were found to produce solutions that managed the problem perfectly well, either learning specific models for each individual or learning generalized models.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"24 \",\"pages\":\"Pages 54-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.024\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

摘要

随着可穿戴设备的广泛使用,人类活动识别和癫痫检测技术已经加快了步伐。一项文献研究显示了基于3D加速度计的癫痫检测的各种研究,这些研究描述了加速度变量的选择和控制转换,同时丢弃了剩余的输入变量贡献。本研究的目的是评估基于不同技术的特征提取,并利用对问题的所有信息进行概述的优势。分析了三种特征提取技术,即局部线性嵌入、主成分分析(PCA)和基于距离的PCA,并将其结果与k近邻和决策树进行了比较。进行了模拟癫痫性阵挛性惊厥的现实实验。人们发现,基于pca的方法可以产生完美管理问题的解决方案,要么为每个个体学习特定模型,要么学习广义模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of abnormal movements with 3D accelerometer sensors for seizure recognition

Human-activity recognition and seizure-detection techniques have gathered pace with the widespread availability of wearable devices. A study of the literature shows various studies for 3D accelerometer-based seizure detection that describe the selection of acceleration variables and controlled transformations, while discarding the remaining input variable contributions. The aim of this research is to evaluate feature extraction based on different techniques and with the advantage of an overview of all information on the problem. Three feature extraction techniques – namely, Locally Linear Embedding, Principal Component Analysis (PCA) and a Distance-Based PCA – are analyzed and their outcomes compared against K-Nearest Neighbor and Decision Trees. A realistic experimentation simulating epileptic mioclonic convulsions was performed. The PCA-based methods were found to produce solutions that managed the problem perfectly well, either learning specific models for each individual or learning generalized models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信