MIMO非线性系统仿真的学习率

Farhat Yassin, Atig Asma, Z. Ali, Ben Abdennour Ridha
{"title":"MIMO非线性系统仿真的学习率","authors":"Farhat Yassin, Atig Asma, Z. Ali, Ben Abdennour Ridha","doi":"10.1109/scc53769.2021.9768381","DOIUrl":null,"url":null,"abstract":"This paper presents an emulation scheme based on a novel method to adjust the learning rate for multivariable nonlinear dynamical systems. The aim of this paper is to adapt the learning rate of the Neural Emulator (NE) in order to accelerate the convergence speed and to improve the precision degree. To ensure fast convergence and good estimation, an online adaptation is developed using a criterion generated by the error of emulation. The obtained results prouve the efficiency of the designed NE compared to those obtained with an existing one using a fuzzy supervision.","PeriodicalId":365845,"journal":{"name":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Learning Rate For MIMO Nonlinear System Emulation\",\"authors\":\"Farhat Yassin, Atig Asma, Z. Ali, Ben Abdennour Ridha\",\"doi\":\"10.1109/scc53769.2021.9768381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an emulation scheme based on a novel method to adjust the learning rate for multivariable nonlinear dynamical systems. The aim of this paper is to adapt the learning rate of the Neural Emulator (NE) in order to accelerate the convergence speed and to improve the precision degree. To ensure fast convergence and good estimation, an online adaptation is developed using a criterion generated by the error of emulation. The obtained results prouve the efficiency of the designed NE compared to those obtained with an existing one using a fuzzy supervision.\",\"PeriodicalId\":365845,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scc53769.2021.9768381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scc53769.2021.9768381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于新方法的多变量非线性动力系统学习率调节仿真方案。本文的目的是调整神经仿真器(NE)的学习率,以加快收敛速度,提高精度。为了保证快速收敛和良好的估计,利用仿真误差产生的准则进行了在线自适应。实验结果表明,与使用模糊监督的现有网络相比,所设计的网络是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Learning Rate For MIMO Nonlinear System Emulation
This paper presents an emulation scheme based on a novel method to adjust the learning rate for multivariable nonlinear dynamical systems. The aim of this paper is to adapt the learning rate of the Neural Emulator (NE) in order to accelerate the convergence speed and to improve the precision degree. To ensure fast convergence and good estimation, an online adaptation is developed using a criterion generated by the error of emulation. The obtained results prouve the efficiency of the designed NE compared to those obtained with an existing one using a fuzzy supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信