高阶RBF-FD近似及其在散射问题中的应用

J. Slak, B. Stojanovic, G. Kosec
{"title":"高阶RBF-FD近似及其在散射问题中的应用","authors":"J. Slak, B. Stojanovic, G. Kosec","doi":"10.23919/SpliTech.2019.8782918","DOIUrl":null,"url":null,"abstract":"A recently suggested technique for high order meshless approximations is described and analyzed in this paper. It involves constructing ordinary Radial Basis Function-generated finite difference approximations augmented with monomials up to a given order to ensure higher convergence rates. These approximations are used to solve the Poisson’s equation on an annulus to demonstrate the predicted convergence rates. The presented methodology is then applied to a scattering problem, which is described by a coupled system of two complex-valued PDEs on two domains, sharing a common boundary.","PeriodicalId":223539,"journal":{"name":"2019 4th International Conference on Smart and Sustainable Technologies (SpliTech)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High order RBF-FD approximations with application to a scattering problem\",\"authors\":\"J. Slak, B. Stojanovic, G. Kosec\",\"doi\":\"10.23919/SpliTech.2019.8782918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recently suggested technique for high order meshless approximations is described and analyzed in this paper. It involves constructing ordinary Radial Basis Function-generated finite difference approximations augmented with monomials up to a given order to ensure higher convergence rates. These approximations are used to solve the Poisson’s equation on an annulus to demonstrate the predicted convergence rates. The presented methodology is then applied to a scattering problem, which is described by a coupled system of two complex-valued PDEs on two domains, sharing a common boundary.\",\"PeriodicalId\":223539,\"journal\":{\"name\":\"2019 4th International Conference on Smart and Sustainable Technologies (SpliTech)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Smart and Sustainable Technologies (SpliTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SpliTech.2019.8782918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Smart and Sustainable Technologies (SpliTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SpliTech.2019.8782918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述和分析了最近提出的一种高阶无网格逼近技术。它涉及构造普通的径向基函数生成的有限差分逼近与单项式增广到给定阶,以确保较高的收敛速度。用这些近似解环空上的泊松方程来证明预测的收敛速率。然后将所提出的方法应用于一个散射问题,该问题由两个具有共同边界的域上的两个复值偏微分方程的耦合系统来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order RBF-FD approximations with application to a scattering problem
A recently suggested technique for high order meshless approximations is described and analyzed in this paper. It involves constructing ordinary Radial Basis Function-generated finite difference approximations augmented with monomials up to a given order to ensure higher convergence rates. These approximations are used to solve the Poisson’s equation on an annulus to demonstrate the predicted convergence rates. The presented methodology is then applied to a scattering problem, which is described by a coupled system of two complex-valued PDEs on two domains, sharing a common boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信