调查汇总tweet作为预测民间抗议替代数据的潜力

Swati Agarwal, A. Sureka
{"title":"调查汇总tweet作为预测民间抗议替代数据的潜力","authors":"Swati Agarwal, A. Sureka","doi":"10.1145/2888451.2888466","DOIUrl":null,"url":null,"abstract":"Online Micro-blogging Social Media websites like Twitter are being used as a real-time platform for information sharing and communication during planning and mobilization of civil unrest events. We conduct a study of more than 1.5 million English Tweets spanning 5 months on the topic of Immigration and found evidences of Twitter being used as a platform for planning and mobilization of protests and civil disobedience related demonstrations. We believe that Twitter data can be used as a surrogate and open-source precursor for forecasting civil unrest and investigate Machine Learning based techniques for building a prediction model. We present our solution approach consisting of various components such as named entity recognition (temporal, spatial location, people expressions extraction), semantic enrichment of events related tweets (crowd-buzz & commentary and mobilization & planning) location-time-topic correlation miner. We conduct a series of experiments on a real-world and large dataset and investigate the application of trend analysis. We conduct two case studies on civil unrest related events and demonstrate the effectiveness of our approach.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Investigating the Potential of Aggregated Tweets as Surrogate Data for Forecasting Civil Protests\",\"authors\":\"Swati Agarwal, A. Sureka\",\"doi\":\"10.1145/2888451.2888466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online Micro-blogging Social Media websites like Twitter are being used as a real-time platform for information sharing and communication during planning and mobilization of civil unrest events. We conduct a study of more than 1.5 million English Tweets spanning 5 months on the topic of Immigration and found evidences of Twitter being used as a platform for planning and mobilization of protests and civil disobedience related demonstrations. We believe that Twitter data can be used as a surrogate and open-source precursor for forecasting civil unrest and investigate Machine Learning based techniques for building a prediction model. We present our solution approach consisting of various components such as named entity recognition (temporal, spatial location, people expressions extraction), semantic enrichment of events related tweets (crowd-buzz & commentary and mobilization & planning) location-time-topic correlation miner. We conduct a series of experiments on a real-world and large dataset and investigate the application of trend analysis. We conduct two case studies on civil unrest related events and demonstrate the effectiveness of our approach.\",\"PeriodicalId\":136431,\"journal\":{\"name\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IKDD Conference on Data Science, 2016\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2888451.2888466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

像推特这样的社交媒体网站正在被用作一个信息共享和沟通的实时平台,用于规划和动员内乱事件。我们对5个月来150多万条关于移民主题的英语推文进行了研究,发现推特被用作计划和动员抗议活动和公民不服从相关示威活动的平台的证据。我们相信Twitter数据可以用作预测内乱的代理和开源先驱,并研究基于机器学习的技术来构建预测模型。我们提出了由多个组件组成的解决方案,如命名实体识别(时间,空间位置,人物表情提取),事件相关tweet的语义丰富(人群buzz &评论和动员&规划)位置-时间-主题关联挖掘器。我们在现实世界和大型数据集上进行了一系列实验,并研究了趋势分析的应用。我们对内乱相关事件进行了两个案例研究,并证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Potential of Aggregated Tweets as Surrogate Data for Forecasting Civil Protests
Online Micro-blogging Social Media websites like Twitter are being used as a real-time platform for information sharing and communication during planning and mobilization of civil unrest events. We conduct a study of more than 1.5 million English Tweets spanning 5 months on the topic of Immigration and found evidences of Twitter being used as a platform for planning and mobilization of protests and civil disobedience related demonstrations. We believe that Twitter data can be used as a surrogate and open-source precursor for forecasting civil unrest and investigate Machine Learning based techniques for building a prediction model. We present our solution approach consisting of various components such as named entity recognition (temporal, spatial location, people expressions extraction), semantic enrichment of events related tweets (crowd-buzz & commentary and mobilization & planning) location-time-topic correlation miner. We conduct a series of experiments on a real-world and large dataset and investigate the application of trend analysis. We conduct two case studies on civil unrest related events and demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信