基于模糊逻辑和神经网络控制器的四轴飞行器轨迹跟踪

Burak Celen, Y. Oniz
{"title":"基于模糊逻辑和神经网络控制器的四轴飞行器轨迹跟踪","authors":"Burak Celen, Y. Oniz","doi":"10.1109/CEIT.2018.8751810","DOIUrl":null,"url":null,"abstract":"In this work, the trajectory tracking control of an Unmanned Aerial Vehicle (UAV) has been realised using fuzzy logic and neural network based controllers. Parrot AR.Drone 2.0 has been selected as the test platform. For simulated and real-time experimental studies, a square shaped reference trajectory has been generated, and the discrepancies from this trajectory in x-and y-directions along with their derivatives have been employed as the input signals to the proposed controllers. The update rules for the neural network have been derived based on the variable structure systems theory to enable stable online tuning of the parameters. The obtained results indicate that both fuzzy logic and neural network controllers can be applied effectively to the trajectory tracking of a drone, and particularly neural networks with variable structure systems theory based learning algorithms exhibit a highly robust behaviour against disturbances.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Trajectory Tracking of a Quadcopter Using Fuzzy Logic and Neural Network Controllers\",\"authors\":\"Burak Celen, Y. Oniz\",\"doi\":\"10.1109/CEIT.2018.8751810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the trajectory tracking control of an Unmanned Aerial Vehicle (UAV) has been realised using fuzzy logic and neural network based controllers. Parrot AR.Drone 2.0 has been selected as the test platform. For simulated and real-time experimental studies, a square shaped reference trajectory has been generated, and the discrepancies from this trajectory in x-and y-directions along with their derivatives have been employed as the input signals to the proposed controllers. The update rules for the neural network have been derived based on the variable structure systems theory to enable stable online tuning of the parameters. The obtained results indicate that both fuzzy logic and neural network controllers can be applied effectively to the trajectory tracking of a drone, and particularly neural networks with variable structure systems theory based learning algorithms exhibit a highly robust behaviour against disturbances.\",\"PeriodicalId\":357613,\"journal\":{\"name\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Control Engineering & Information Technology (CEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIT.2018.8751810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文采用模糊逻辑和基于神经网络的控制器实现了无人机的轨迹跟踪控制。我们选择Parrot AR.Drone 2.0作为测试平台。在仿真和实时实验研究中,生成了一个方形参考轨迹,并将该轨迹在x和y方向上的差异及其导数作为所提出控制器的输入信号。基于变结构系统理论推导了神经网络的更新规则,实现了参数的在线稳定整定。研究结果表明,模糊逻辑和神经网络控制器都可以有效地应用于无人机的轨迹跟踪,特别是基于变结构系统理论学习算法的神经网络对干扰具有很高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Tracking of a Quadcopter Using Fuzzy Logic and Neural Network Controllers
In this work, the trajectory tracking control of an Unmanned Aerial Vehicle (UAV) has been realised using fuzzy logic and neural network based controllers. Parrot AR.Drone 2.0 has been selected as the test platform. For simulated and real-time experimental studies, a square shaped reference trajectory has been generated, and the discrepancies from this trajectory in x-and y-directions along with their derivatives have been employed as the input signals to the proposed controllers. The update rules for the neural network have been derived based on the variable structure systems theory to enable stable online tuning of the parameters. The obtained results indicate that both fuzzy logic and neural network controllers can be applied effectively to the trajectory tracking of a drone, and particularly neural networks with variable structure systems theory based learning algorithms exhibit a highly robust behaviour against disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信