改进Huffman码冗余的Gallager上界

Jia-Pei Shen, J. Gill
{"title":"改进Huffman码冗余的Gallager上界","authors":"Jia-Pei Shen, J. Gill","doi":"10.1109/ISIT.2001.936081","DOIUrl":null,"url":null,"abstract":"We propose the first single bound that supersedes Gallager's (1978) upper bound on the redundancy of binary Huffman codes with the given largest source symbol probability ranging from 0 to 0.5. We define the linear logarithm and linear logarithm entropy. We find the maximal difference between the linear and the ordinary logarithms. We prove that the \"redundancy\" of a binary Huffmann code with respect to the linear logarithm entropy is no more than the largest source symbol probability. We therefore establish a better upper bound than Gallager's on the redundancy of binary Huffman codes.","PeriodicalId":433761,"journal":{"name":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Gallager's upper bound on Huffman codes redundancy\",\"authors\":\"Jia-Pei Shen, J. Gill\",\"doi\":\"10.1109/ISIT.2001.936081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the first single bound that supersedes Gallager's (1978) upper bound on the redundancy of binary Huffman codes with the given largest source symbol probability ranging from 0 to 0.5. We define the linear logarithm and linear logarithm entropy. We find the maximal difference between the linear and the ordinary logarithms. We prove that the \\\"redundancy\\\" of a binary Huffmann code with respect to the linear logarithm entropy is no more than the largest source symbol probability. We therefore establish a better upper bound than Gallager's on the redundancy of binary Huffman codes.\",\"PeriodicalId\":433761,\"journal\":{\"name\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2001.936081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2001.936081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了取代Gallager(1978)的二进制霍夫曼码冗余上界的第一个单界,给定最大源符号概率范围为0到0.5。我们定义了线性对数和线性对数熵。我们找到了线性对数和普通对数的最大区别。我们证明了二进制霍夫曼码相对于线性对数熵的“冗余”不超过最大源符号概率。因此,我们在二元霍夫曼码的冗余上建立了一个比Gallager的更好的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Gallager's upper bound on Huffman codes redundancy
We propose the first single bound that supersedes Gallager's (1978) upper bound on the redundancy of binary Huffman codes with the given largest source symbol probability ranging from 0 to 0.5. We define the linear logarithm and linear logarithm entropy. We find the maximal difference between the linear and the ordinary logarithms. We prove that the "redundancy" of a binary Huffmann code with respect to the linear logarithm entropy is no more than the largest source symbol probability. We therefore establish a better upper bound than Gallager's on the redundancy of binary Huffman codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信