用决策树学习马尔可夫网络结构

Daniel Lowd, Jesse Davis
{"title":"用决策树学习马尔可夫网络结构","authors":"Daniel Lowd, Jesse Davis","doi":"10.1109/ICDM.2010.128","DOIUrl":null,"url":null,"abstract":"Traditional Markov network structure learning algorithms perform a search for globally useful features. However, these algorithms are often slow and prone to finding local optima due to the large space of possible structures. Ravikumar et al. recently proposed the alternative idea of applying L1 logistic regression to learn a set of pair wise features for each variable, which are then combined into a global model. This paper presents the DTSL algorithm, which uses probabilistic decision trees as the local model. Our approach has two significant advantages: it is more efficient, and it is able to discover features that capture more complex interactions among the variables. Our approach can also be seen as a method for converting a dependency network into a consistent probabilistic model. In an extensive empirical evaluation on 13 datasets, our algorithm obtains comparable accuracy to three standard structure learning algorithms while running 1-4 orders of magnitude faster.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"02 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Learning Markov Network Structure with Decision Trees\",\"authors\":\"Daniel Lowd, Jesse Davis\",\"doi\":\"10.1109/ICDM.2010.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional Markov network structure learning algorithms perform a search for globally useful features. However, these algorithms are often slow and prone to finding local optima due to the large space of possible structures. Ravikumar et al. recently proposed the alternative idea of applying L1 logistic regression to learn a set of pair wise features for each variable, which are then combined into a global model. This paper presents the DTSL algorithm, which uses probabilistic decision trees as the local model. Our approach has two significant advantages: it is more efficient, and it is able to discover features that capture more complex interactions among the variables. Our approach can also be seen as a method for converting a dependency network into a consistent probabilistic model. In an extensive empirical evaluation on 13 datasets, our algorithm obtains comparable accuracy to three standard structure learning algorithms while running 1-4 orders of magnitude faster.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"02 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

传统的马尔可夫网络结构学习算法执行全局有用特征的搜索。然而,由于可能的结构空间很大,这些算法往往很慢,容易找到局部最优。Ravikumar等人最近提出了另一种想法,即应用L1逻辑回归来学习每个变量的一组成对特征,然后将其组合成一个全局模型。本文提出了采用概率决策树作为局部模型的DTSL算法。我们的方法有两个显著的优点:它更有效,并且能够发现捕获变量之间更复杂交互的特征。我们的方法也可以看作是一种将依赖网络转换为一致概率模型的方法。在对13个数据集的广泛经验评估中,我们的算法获得与三种标准结构学习算法相当的精度,同时运行速度快1-4个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Markov Network Structure with Decision Trees
Traditional Markov network structure learning algorithms perform a search for globally useful features. However, these algorithms are often slow and prone to finding local optima due to the large space of possible structures. Ravikumar et al. recently proposed the alternative idea of applying L1 logistic regression to learn a set of pair wise features for each variable, which are then combined into a global model. This paper presents the DTSL algorithm, which uses probabilistic decision trees as the local model. Our approach has two significant advantages: it is more efficient, and it is able to discover features that capture more complex interactions among the variables. Our approach can also be seen as a method for converting a dependency network into a consistent probabilistic model. In an extensive empirical evaluation on 13 datasets, our algorithm obtains comparable accuracy to three standard structure learning algorithms while running 1-4 orders of magnitude faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信