面向多线索城市路缘识别

M. Enzweiler, Pierre Greiner, Carsten Knöppel, Uwe Franke
{"title":"面向多线索城市路缘识别","authors":"M. Enzweiler, Pierre Greiner, Carsten Knöppel, Uwe Franke","doi":"10.1109/IVS.2013.6629581","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on three-dimensional height profile data derived from stereo vision. We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kaiman filter-based urban lane recognition system. Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Towards multi-cue urban curb recognition\",\"authors\":\"M. Enzweiler, Pierre Greiner, Carsten Knöppel, Uwe Franke\",\"doi\":\"10.1109/IVS.2013.6629581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on three-dimensional height profile data derived from stereo vision. We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kaiman filter-based urban lane recognition system. Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

提出了一种基于多线索的城市交通约束识别方法。我们提出了一种新的基于纹理的路边分类器,该分类器将局部接受野(LRF)特征与多层神经网络相结合。该分类模块对强度图像和立体视觉衍生的三维高度轮廓数据进行操作。我们将提出的多线索路边分类器作为附加的测量模块集成到最先进的基于Kaiman滤波器的城市车道识别系统中。我们的实验涉及到一个具有挑战性的真实世界数据集,该数据集是在城市交通中捕获的,并带有手动标记的地面真值。我们量化了所提出的多线索路边分类器在提高综合系统路边定位精度方面的好处。我们的结果表明,在实时处理速度下,平均抑制定位误差减少了25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards multi-cue urban curb recognition
This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on three-dimensional height profile data derived from stereo vision. We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kaiman filter-based urban lane recognition system. Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信