M. Enzweiler, Pierre Greiner, Carsten Knöppel, Uwe Franke
{"title":"面向多线索城市路缘识别","authors":"M. Enzweiler, Pierre Greiner, Carsten Knöppel, Uwe Franke","doi":"10.1109/IVS.2013.6629581","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on three-dimensional height profile data derived from stereo vision. We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kaiman filter-based urban lane recognition system. Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Towards multi-cue urban curb recognition\",\"authors\":\"M. Enzweiler, Pierre Greiner, Carsten Knöppel, Uwe Franke\",\"doi\":\"10.1109/IVS.2013.6629581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on three-dimensional height profile data derived from stereo vision. We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kaiman filter-based urban lane recognition system. Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a multi-cue approach to curb recognition in urban traffic. We propose a novel texture-based curb classifier using local receptive field (LRF) features in conjunction with a multi-layer neural network. This classification module operates on both intensity images and on three-dimensional height profile data derived from stereo vision. We integrate the proposed multi-cue curb classifier as an additional measurement module into a state-of-the-art Kaiman filter-based urban lane recognition system. Our experiments involve a challenging real-world dataset captured in urban traffic with manually labeled ground-truth. We quantify the benefit of the proposed multi-cue curb classifier in terms of the improvement in curb localization accuracy of the integrated system. Our results indicate a 25% reduction of the average curb localization error at real-time processing speeds.