Toru Ejima, K. Ohara, T. Takubo, Y. Mae, T. Tanikawa, T. Arai
{"title":"具有大工作空间的紧凑三自由度微手系统设计","authors":"Toru Ejima, K. Ohara, T. Takubo, Y. Mae, T. Tanikawa, T. Arai","doi":"10.1109/MHS.2011.6102160","DOIUrl":null,"url":null,"abstract":"In the fields of medicine and biology, it is essential to realize fine manipulation. Therefore, micromanipulation techniques and micromanipulators such as microgrippers and optical tweezers have been developed. We have developed a two-fingered microhand which is using the parallel mechanism to realize precise and stable micromanipulation. In this paper, we report the design of a compact 3-DOF microhand system with a large workspace. This microhand contains a new parallel mechanism and its characteristic is utilizing the singularity of the parallel mechanisms. We establish an analytic theory for the proposed microhand, and we analyze the workspace. Also, we draw the CAD data to realize the system in 3D. The workspace of the proposed microhand is larger than previous microhands as far as simulation results shows.","PeriodicalId":286457,"journal":{"name":"2011 International Symposium on Micro-NanoMechatronics and Human Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of a compact 3-DOF microhand system with large workspace\",\"authors\":\"Toru Ejima, K. Ohara, T. Takubo, Y. Mae, T. Tanikawa, T. Arai\",\"doi\":\"10.1109/MHS.2011.6102160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the fields of medicine and biology, it is essential to realize fine manipulation. Therefore, micromanipulation techniques and micromanipulators such as microgrippers and optical tweezers have been developed. We have developed a two-fingered microhand which is using the parallel mechanism to realize precise and stable micromanipulation. In this paper, we report the design of a compact 3-DOF microhand system with a large workspace. This microhand contains a new parallel mechanism and its characteristic is utilizing the singularity of the parallel mechanisms. We establish an analytic theory for the proposed microhand, and we analyze the workspace. Also, we draw the CAD data to realize the system in 3D. The workspace of the proposed microhand is larger than previous microhands as far as simulation results shows.\",\"PeriodicalId\":286457,\"journal\":{\"name\":\"2011 International Symposium on Micro-NanoMechatronics and Human Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Micro-NanoMechatronics and Human Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2011.6102160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2011.6102160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a compact 3-DOF microhand system with large workspace
In the fields of medicine and biology, it is essential to realize fine manipulation. Therefore, micromanipulation techniques and micromanipulators such as microgrippers and optical tweezers have been developed. We have developed a two-fingered microhand which is using the parallel mechanism to realize precise and stable micromanipulation. In this paper, we report the design of a compact 3-DOF microhand system with a large workspace. This microhand contains a new parallel mechanism and its characteristic is utilizing the singularity of the parallel mechanisms. We establish an analytic theory for the proposed microhand, and we analyze the workspace. Also, we draw the CAD data to realize the system in 3D. The workspace of the proposed microhand is larger than previous microhands as far as simulation results shows.