石墨烯对GFRP复合材料振动和阻燃性能影响的研究

Thangapandian Nagamalai, R. Shanmugam, T. Murugan, M. Vinayagam, Seth Dennison
{"title":"石墨烯对GFRP复合材料振动和阻燃性能影响的研究","authors":"Thangapandian Nagamalai, R. Shanmugam, T. Murugan, M. Vinayagam, Seth Dennison","doi":"10.1115/imece2022-95066","DOIUrl":null,"url":null,"abstract":"\n In this work, the graphene nanoplatelets were reinforced in the GFRP composites to improve their mechanical, vibrational, and flame retardant properties. Three nanocomposites plates namely G1 (GFRP+0.25 wt.% graphene), G2 (GFRP+0.5 wt.% graphene), G3 (GFRP+1 wt.% graphene), and a neat composite plate (G0) were fabricated using hand layup method followed by compression molding. The effect of graphene on the damping properties of the composites was studied by using a free vibration test. The reduction in natural frequency was witnessed in the nanocomposite material ensuring the effective interfacial bonding between the graphene and matrix. The rate of burning test results confirms that the addition of graphene resulted in improved flame retardancy due to the formation of a protective char layer. The highest tensile strength value was observed in the 0.5 wt.% graphene composites, which is ∼1.5 times higher than that of the neat composites. The strength reduction in 1 wt.% graphene composites is due to the percolation of graphene, which acts as a potential site for stress concentration. Unlike tensile strength, the shore hardness value increased with the wt.% of the graphene reinforcement. This study elaborates the synergetic effect of graphene on the mechanical and vibrational characteristics of the composites.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Effect of Graphene on the Vibrational and Flame Retardant Characteristics of the GFRP Composites\",\"authors\":\"Thangapandian Nagamalai, R. Shanmugam, T. Murugan, M. Vinayagam, Seth Dennison\",\"doi\":\"10.1115/imece2022-95066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, the graphene nanoplatelets were reinforced in the GFRP composites to improve their mechanical, vibrational, and flame retardant properties. Three nanocomposites plates namely G1 (GFRP+0.25 wt.% graphene), G2 (GFRP+0.5 wt.% graphene), G3 (GFRP+1 wt.% graphene), and a neat composite plate (G0) were fabricated using hand layup method followed by compression molding. The effect of graphene on the damping properties of the composites was studied by using a free vibration test. The reduction in natural frequency was witnessed in the nanocomposite material ensuring the effective interfacial bonding between the graphene and matrix. The rate of burning test results confirms that the addition of graphene resulted in improved flame retardancy due to the formation of a protective char layer. The highest tensile strength value was observed in the 0.5 wt.% graphene composites, which is ∼1.5 times higher than that of the neat composites. The strength reduction in 1 wt.% graphene composites is due to the percolation of graphene, which acts as a potential site for stress concentration. Unlike tensile strength, the shore hardness value increased with the wt.% of the graphene reinforcement. This study elaborates the synergetic effect of graphene on the mechanical and vibrational characteristics of the composites.\",\"PeriodicalId\":146276,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,石墨烯纳米片在GFRP复合材料中得到增强,以改善其机械、振动和阻燃性能。采用手工铺层的方法制备了G1 (GFRP+0.25 wt.%石墨烯)、G2 (GFRP+0.5 wt.%石墨烯)、G3 (GFRP+1 wt.%石墨烯)和整齐复合材料板(G0)。通过自由振动试验研究了石墨烯对复合材料阻尼性能的影响。纳米复合材料的固有频率降低,确保了石墨烯和基体之间有效的界面键合。燃烧速率测试结果证实,石墨烯的加入由于形成了保护炭层而提高了阻燃性。在0.5% wt.%的石墨烯复合材料中观察到最高的抗拉强度值,比纯复合材料高约1.5倍。1 wt.%石墨烯复合材料的强度降低是由于石墨烯的渗透,它作为应力集中的潜在场所。与拉伸强度不同,邵氏硬度值随着石墨烯增强剂wt %的增加而增加。本研究阐述了石墨烯对复合材料力学和振动特性的协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Effect of Graphene on the Vibrational and Flame Retardant Characteristics of the GFRP Composites
In this work, the graphene nanoplatelets were reinforced in the GFRP composites to improve their mechanical, vibrational, and flame retardant properties. Three nanocomposites plates namely G1 (GFRP+0.25 wt.% graphene), G2 (GFRP+0.5 wt.% graphene), G3 (GFRP+1 wt.% graphene), and a neat composite plate (G0) were fabricated using hand layup method followed by compression molding. The effect of graphene on the damping properties of the composites was studied by using a free vibration test. The reduction in natural frequency was witnessed in the nanocomposite material ensuring the effective interfacial bonding between the graphene and matrix. The rate of burning test results confirms that the addition of graphene resulted in improved flame retardancy due to the formation of a protective char layer. The highest tensile strength value was observed in the 0.5 wt.% graphene composites, which is ∼1.5 times higher than that of the neat composites. The strength reduction in 1 wt.% graphene composites is due to the percolation of graphene, which acts as a potential site for stress concentration. Unlike tensile strength, the shore hardness value increased with the wt.% of the graphene reinforcement. This study elaborates the synergetic effect of graphene on the mechanical and vibrational characteristics of the composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信