{"title":"知识转移分类法在管道施工检查最佳实践中的应用","authors":"Ritch Rappel, Julia Dorscht, R. Sahney","doi":"10.1115/IPC2018-78523","DOIUrl":null,"url":null,"abstract":"The pipeline sector is facing a multi-faceted challenge regarding its workforce. Valuable knowledge is being lost as increasing numbers of technical experts and long-term employees exit the industry (due to retirement). Concurrently, the public spotlight is focused on the environmental impact of the pipeline industry. Therefore, robust construction of new pipelines and effective maintenance of aging infrastructure is increasingly important. Herein lies the challenge — How does the industry transfer the knowledge required to ensure that personnel have suitable competency to maintain the integrity of the pipeline system? A scenario where new personnel efficiently gain knowledge through experience is critical.\n An important aspect of achieving this is a more systematic and thoughtful approach to knowledge transfer. As part of its fundamental methodology for developing training and alternate methods for knowledge transfer, the team launched an initiative to review the literature and current industry approaches. This was done as a key input to developing a “Knowledge Taxonomy.” This tool simplifies the process for selecting the optimal method for effectively transferring key technical knowledge based on the desired level of competency (e.g., awareness building vs. mastery).\n Specifically, the team identified a number of consistent themes and combined them with both sound educational theory and industry experience to develop a tool in the form of a practical framework. This Knowledge Transfer Taxonomy was then applied to a specific knowledge gap in industry as a case study. This paper will\n 1. Summarize, at a high level, the results of the literature review and current approaches;\n 2. Describe the framework (i.e., Knowledge Taxonomy) developed by the team;\n 3. Discuss a case study involving the application of this framework to a specific and real challenge; and\n Through this work, the team identified and developed specific strategies and tactics to effectively overcome some of the barriers to knowledge transfer. These experiences will be shared in the context of a specific situation that typifies the current challenges industry is facing in effective knowledge transfer.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of a Knowledge Transfer Taxonomy to Pipeline Construction Inspection Best Practices\",\"authors\":\"Ritch Rappel, Julia Dorscht, R. Sahney\",\"doi\":\"10.1115/IPC2018-78523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pipeline sector is facing a multi-faceted challenge regarding its workforce. Valuable knowledge is being lost as increasing numbers of technical experts and long-term employees exit the industry (due to retirement). Concurrently, the public spotlight is focused on the environmental impact of the pipeline industry. Therefore, robust construction of new pipelines and effective maintenance of aging infrastructure is increasingly important. Herein lies the challenge — How does the industry transfer the knowledge required to ensure that personnel have suitable competency to maintain the integrity of the pipeline system? A scenario where new personnel efficiently gain knowledge through experience is critical.\\n An important aspect of achieving this is a more systematic and thoughtful approach to knowledge transfer. As part of its fundamental methodology for developing training and alternate methods for knowledge transfer, the team launched an initiative to review the literature and current industry approaches. This was done as a key input to developing a “Knowledge Taxonomy.” This tool simplifies the process for selecting the optimal method for effectively transferring key technical knowledge based on the desired level of competency (e.g., awareness building vs. mastery).\\n Specifically, the team identified a number of consistent themes and combined them with both sound educational theory and industry experience to develop a tool in the form of a practical framework. This Knowledge Transfer Taxonomy was then applied to a specific knowledge gap in industry as a case study. This paper will\\n 1. Summarize, at a high level, the results of the literature review and current approaches;\\n 2. Describe the framework (i.e., Knowledge Taxonomy) developed by the team;\\n 3. Discuss a case study involving the application of this framework to a specific and real challenge; and\\n Through this work, the team identified and developed specific strategies and tactics to effectively overcome some of the barriers to knowledge transfer. These experiences will be shared in the context of a specific situation that typifies the current challenges industry is facing in effective knowledge transfer.\",\"PeriodicalId\":164582,\"journal\":{\"name\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Application of a Knowledge Transfer Taxonomy to Pipeline Construction Inspection Best Practices
The pipeline sector is facing a multi-faceted challenge regarding its workforce. Valuable knowledge is being lost as increasing numbers of technical experts and long-term employees exit the industry (due to retirement). Concurrently, the public spotlight is focused on the environmental impact of the pipeline industry. Therefore, robust construction of new pipelines and effective maintenance of aging infrastructure is increasingly important. Herein lies the challenge — How does the industry transfer the knowledge required to ensure that personnel have suitable competency to maintain the integrity of the pipeline system? A scenario where new personnel efficiently gain knowledge through experience is critical.
An important aspect of achieving this is a more systematic and thoughtful approach to knowledge transfer. As part of its fundamental methodology for developing training and alternate methods for knowledge transfer, the team launched an initiative to review the literature and current industry approaches. This was done as a key input to developing a “Knowledge Taxonomy.” This tool simplifies the process for selecting the optimal method for effectively transferring key technical knowledge based on the desired level of competency (e.g., awareness building vs. mastery).
Specifically, the team identified a number of consistent themes and combined them with both sound educational theory and industry experience to develop a tool in the form of a practical framework. This Knowledge Transfer Taxonomy was then applied to a specific knowledge gap in industry as a case study. This paper will
1. Summarize, at a high level, the results of the literature review and current approaches;
2. Describe the framework (i.e., Knowledge Taxonomy) developed by the team;
3. Discuss a case study involving the application of this framework to a specific and real challenge; and
Through this work, the team identified and developed specific strategies and tactics to effectively overcome some of the barriers to knowledge transfer. These experiences will be shared in the context of a specific situation that typifies the current challenges industry is facing in effective knowledge transfer.