Wang Ding, Songnian Yu, Qianfeng Wang, Jiaqi Yu, Qiang Guo
{"title":"一种新的朴素贝叶斯文本分类器","authors":"Wang Ding, Songnian Yu, Qianfeng Wang, Jiaqi Yu, Qiang Guo","doi":"10.1109/ISIP.2008.54","DOIUrl":null,"url":null,"abstract":"The naive Bayesian (NB) classifier is one of the simple but most efficient and stable classification methods. The great efficiency of NB is mainly because of the conditionally independence assumption among the attributes, which is problematic in practice especially while the attributes are strongly correlated. In this paper, we propose a novel NB text classifier, package and combined naive Bayesian text classifier (PC-NB) that relaxes the independence assumption. The main aim of PC-NB is to make naive Bayesian classifier be more accurate without efficiency reduction. A set of experiments were performed and the results of the analysis and experiment indicate that the proposed classifier is more accurate and powerful while the attributes of an instance are strongly correlated.","PeriodicalId":103284,"journal":{"name":"2008 International Symposiums on Information Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Novel Naive Bayesian Text Classifier\",\"authors\":\"Wang Ding, Songnian Yu, Qianfeng Wang, Jiaqi Yu, Qiang Guo\",\"doi\":\"10.1109/ISIP.2008.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The naive Bayesian (NB) classifier is one of the simple but most efficient and stable classification methods. The great efficiency of NB is mainly because of the conditionally independence assumption among the attributes, which is problematic in practice especially while the attributes are strongly correlated. In this paper, we propose a novel NB text classifier, package and combined naive Bayesian text classifier (PC-NB) that relaxes the independence assumption. The main aim of PC-NB is to make naive Bayesian classifier be more accurate without efficiency reduction. A set of experiments were performed and the results of the analysis and experiment indicate that the proposed classifier is more accurate and powerful while the attributes of an instance are strongly correlated.\",\"PeriodicalId\":103284,\"journal\":{\"name\":\"2008 International Symposiums on Information Processing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposiums on Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIP.2008.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposiums on Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIP.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The naive Bayesian (NB) classifier is one of the simple but most efficient and stable classification methods. The great efficiency of NB is mainly because of the conditionally independence assumption among the attributes, which is problematic in practice especially while the attributes are strongly correlated. In this paper, we propose a novel NB text classifier, package and combined naive Bayesian text classifier (PC-NB) that relaxes the independence assumption. The main aim of PC-NB is to make naive Bayesian classifier be more accurate without efficiency reduction. A set of experiments were performed and the results of the analysis and experiment indicate that the proposed classifier is more accurate and powerful while the attributes of an instance are strongly correlated.