Juan José Besa Vial, Timothy Johnson, Nil Mamano, Martha C. Osegueda
{"title":"驯服骑士之旅:减少转弯和交叉","authors":"Juan José Besa Vial, Timothy Johnson, Nil Mamano, Martha C. Osegueda","doi":"10.4230/LIPIcs.FUN.2021.4","DOIUrl":null,"url":null,"abstract":"We introduce two new metrics of simplicity for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.5n+O(1)$ turns and $13n+O(1)$ crossings on a $n\\times n$ board. We show lower bounds of $(6-\\varepsilon)n$, for any $\\varepsilon>0$, and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, we achieve approximation ratios of $19/12+o(1)$ and $13/4+o(1)$. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taming the Knight's Tour: Minimizing Turns and Crossings\",\"authors\":\"Juan José Besa Vial, Timothy Johnson, Nil Mamano, Martha C. Osegueda\",\"doi\":\"10.4230/LIPIcs.FUN.2021.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce two new metrics of simplicity for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.5n+O(1)$ turns and $13n+O(1)$ crossings on a $n\\\\times n$ board. We show lower bounds of $(6-\\\\varepsilon)n$, for any $\\\\varepsilon>0$, and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, we achieve approximation ratios of $19/12+o(1)$ and $13/4+o(1)$. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.\",\"PeriodicalId\":293763,\"journal\":{\"name\":\"Fun with Algorithms\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fun with Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FUN.2021.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2021.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Taming the Knight's Tour: Minimizing Turns and Crossings
We introduce two new metrics of simplicity for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.5n+O(1)$ turns and $13n+O(1)$ crossings on a $n\times n$ board. We show lower bounds of $(6-\varepsilon)n$, for any $\varepsilon>0$, and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, we achieve approximation ratios of $19/12+o(1)$ and $13/4+o(1)$. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.