驯服骑士之旅:减少转弯和交叉

Juan José Besa Vial, Timothy Johnson, Nil Mamano, Martha C. Osegueda
{"title":"驯服骑士之旅:减少转弯和交叉","authors":"Juan José Besa Vial, Timothy Johnson, Nil Mamano, Martha C. Osegueda","doi":"10.4230/LIPIcs.FUN.2021.4","DOIUrl":null,"url":null,"abstract":"We introduce two new metrics of simplicity for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.5n+O(1)$ turns and $13n+O(1)$ crossings on a $n\\times n$ board. We show lower bounds of $(6-\\varepsilon)n$, for any $\\varepsilon>0$, and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, we achieve approximation ratios of $19/12+o(1)$ and $13/4+o(1)$. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taming the Knight's Tour: Minimizing Turns and Crossings\",\"authors\":\"Juan José Besa Vial, Timothy Johnson, Nil Mamano, Martha C. Osegueda\",\"doi\":\"10.4230/LIPIcs.FUN.2021.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce two new metrics of simplicity for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.5n+O(1)$ turns and $13n+O(1)$ crossings on a $n\\\\times n$ board. We show lower bounds of $(6-\\\\varepsilon)n$, for any $\\\\varepsilon>0$, and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, we achieve approximation ratios of $19/12+o(1)$ and $13/4+o(1)$. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.\",\"PeriodicalId\":293763,\"journal\":{\"name\":\"Fun with Algorithms\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fun with Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FUN.2021.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2021.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为骑士的旅行引入了两个新的简单度量:转弯次数和交叉次数。我们给出了一种新的算法,该算法在$n\ * n$的棋盘上产生$9.5n+O(1)$次转弯和$13n+O(1)$次交叉的旅行。我们给出了$(6-\varepsilon)n$的下界,对于任何$\varepsilon>0$,以及$4n-O(1)$在最小化这些度量的各自问题上的下界。因此,我们获得了$19/12+o(1)$和$13/4+o(1)$的近似比率。我们将我们的技术推广到矩形棋盘,高维棋盘,对称游,缺角的奇数棋盘,以及$(1,4)$-跳子的游。在此过程中,我们证明了这些扩展在最小匝数和大多数情况下的交叉数上也承认一个常数近似比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taming the Knight's Tour: Minimizing Turns and Crossings
We introduce two new metrics of simplicity for knight's tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with $9.5n+O(1)$ turns and $13n+O(1)$ crossings on a $n\times n$ board. We show lower bounds of $(6-\varepsilon)n$, for any $\varepsilon>0$, and $4n-O(1)$ on the respective problems of minimizing these metrics. Hence, we achieve approximation ratios of $19/12+o(1)$ and $13/4+o(1)$. We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for $(1,4)$-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信