{"title":"高光谱图像异常检测的非高斯背景建模","authors":"E. Madar, D. Malah, M. Barzohar","doi":"10.5281/ZENODO.42499","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches and does not assume Gaussianity. The local-global background model has the ability to adapt to all nuances of the background process, like local models, but avoids overfitting that may result due a too high number of degrees of freedom, producing a high false alarm rate. This is achieved by globally combining the local background models into a “dictionary”, which serves to remove false alarms. Experimental results strongly prove the effectiveness of the proposed algorithm. These results show that the proposed local-global algorithm performs better than several other local or global anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMM-RX).","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Non-Gaussian background modeling for anomaly detection in hyperspectral images\",\"authors\":\"E. Madar, D. Malah, M. Barzohar\",\"doi\":\"10.5281/ZENODO.42499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches and does not assume Gaussianity. The local-global background model has the ability to adapt to all nuances of the background process, like local models, but avoids overfitting that may result due a too high number of degrees of freedom, producing a high false alarm rate. This is achieved by globally combining the local background models into a “dictionary”, which serves to remove false alarms. Experimental results strongly prove the effectiveness of the proposed algorithm. These results show that the proposed local-global algorithm performs better than several other local or global anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMM-RX).\",\"PeriodicalId\":331889,\"journal\":{\"name\":\"2011 19th European Signal Processing Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Gaussian background modeling for anomaly detection in hyperspectral images
In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches and does not assume Gaussianity. The local-global background model has the ability to adapt to all nuances of the background process, like local models, but avoids overfitting that may result due a too high number of degrees of freedom, producing a high false alarm rate. This is achieved by globally combining the local background models into a “dictionary”, which serves to remove false alarms. Experimental results strongly prove the effectiveness of the proposed algorithm. These results show that the proposed local-global algorithm performs better than several other local or global anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMM-RX).