{"title":"碳纤维与芳纶和超高分子量聚乙烯纤维的杂化对混杂碳纤维冲击性能的影响","authors":"N. Korneeva, I. Krylov, I. Abdullin, V. Kudinov","doi":"10.30791/0015-3214-2022-3-43-53","DOIUrl":null,"url":null,"abstract":"The properties and mechanisms of destruction of hybrid composite materials (HCMs) based on flexible and brittle matrices, reinforced with hybrid fibers made of carbon, aramid and ultra-high molecular weight polyethylene (UHMWPE) fibers were investigated by the method of “impact break” (IB) upon low-velosity impact. The composition of the hybrid fiber and the plasticity of the matrix affect the properties and fracture mode of the HCM. It is discovered that the combination of carbon and aramid fibers in a hybrid fiber for reinforcing a flexible matrix (FM) makes it possible to create a material with delayed fracture. It has been shown that upon impact for the destruction of HCM with a flexible matrix, a load twice as large as for specimens with a brittle matrix is required. The highest strength have hybrids, in which, at all stages of loading, up to fracture, there is a joint deformation of the matrix and the reinforcing fiber. The mechanism of deformation and destruction of anisotropic HCMs upon impact has a stepwise character.","PeriodicalId":366423,"journal":{"name":"Physics and Chemistry of Materials Treatment","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of hybridization of carbon fibers with aramid and UHMWPE-fibers on the impact properties of hybrid CFRPs\",\"authors\":\"N. Korneeva, I. Krylov, I. Abdullin, V. Kudinov\",\"doi\":\"10.30791/0015-3214-2022-3-43-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The properties and mechanisms of destruction of hybrid composite materials (HCMs) based on flexible and brittle matrices, reinforced with hybrid fibers made of carbon, aramid and ultra-high molecular weight polyethylene (UHMWPE) fibers were investigated by the method of “impact break” (IB) upon low-velosity impact. The composition of the hybrid fiber and the plasticity of the matrix affect the properties and fracture mode of the HCM. It is discovered that the combination of carbon and aramid fibers in a hybrid fiber for reinforcing a flexible matrix (FM) makes it possible to create a material with delayed fracture. It has been shown that upon impact for the destruction of HCM with a flexible matrix, a load twice as large as for specimens with a brittle matrix is required. The highest strength have hybrids, in which, at all stages of loading, up to fracture, there is a joint deformation of the matrix and the reinforcing fiber. The mechanism of deformation and destruction of anisotropic HCMs upon impact has a stepwise character.\",\"PeriodicalId\":366423,\"journal\":{\"name\":\"Physics and Chemistry of Materials Treatment\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Materials Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/0015-3214-2022-3-43-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Materials Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/0015-3214-2022-3-43-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of hybridization of carbon fibers with aramid and UHMWPE-fibers on the impact properties of hybrid CFRPs
The properties and mechanisms of destruction of hybrid composite materials (HCMs) based on flexible and brittle matrices, reinforced with hybrid fibers made of carbon, aramid and ultra-high molecular weight polyethylene (UHMWPE) fibers were investigated by the method of “impact break” (IB) upon low-velosity impact. The composition of the hybrid fiber and the plasticity of the matrix affect the properties and fracture mode of the HCM. It is discovered that the combination of carbon and aramid fibers in a hybrid fiber for reinforcing a flexible matrix (FM) makes it possible to create a material with delayed fracture. It has been shown that upon impact for the destruction of HCM with a flexible matrix, a load twice as large as for specimens with a brittle matrix is required. The highest strength have hybrids, in which, at all stages of loading, up to fracture, there is a joint deformation of the matrix and the reinforcing fiber. The mechanism of deformation and destruction of anisotropic HCMs upon impact has a stepwise character.