基于卷积自编码器的预测维护异常检测

R.-Q. Tian, L. Liboni, M. Capretz
{"title":"基于卷积自编码器的预测维护异常检测","authors":"R.-Q. Tian, L. Liboni, M. Capretz","doi":"10.1109/ISCMI56532.2022.10068441","DOIUrl":null,"url":null,"abstract":"Predictive maintenance is set to prevent downtime and failures of equipment and processes to meet the quality and availability requirements of several industrial, commercial, and even residential activities. This paper proposes CAE-AD, a novel convolutional autoencoder anomaly detection method that relies only on normal operation data for training the intelligent classi-fier. The method also accommodates a sliding window algorithm for generating the input from sensor readings, which accounts for the dynamic characteristics of the data. The anomaly detection is accomplished by comparing the convolutional autoencoder reconstruction error to a threshold value to segregate between normal and anomalous predictions. The threshold value is found by minimizing the False Positive Rates and False Negative Rates. Using a benchmark water pump sensor time-series data, the model successfully classified all water pump breakdowns and correctly identified 98.8% of anomalous data and 94.8 % of normal data using a chosen best window length of the past 37 sensor readings.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection with Convolutional Autoencoder for Predictive Maintenance\",\"authors\":\"R.-Q. Tian, L. Liboni, M. Capretz\",\"doi\":\"10.1109/ISCMI56532.2022.10068441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive maintenance is set to prevent downtime and failures of equipment and processes to meet the quality and availability requirements of several industrial, commercial, and even residential activities. This paper proposes CAE-AD, a novel convolutional autoencoder anomaly detection method that relies only on normal operation data for training the intelligent classi-fier. The method also accommodates a sliding window algorithm for generating the input from sensor readings, which accounts for the dynamic characteristics of the data. The anomaly detection is accomplished by comparing the convolutional autoencoder reconstruction error to a threshold value to segregate between normal and anomalous predictions. The threshold value is found by minimizing the False Positive Rates and False Negative Rates. Using a benchmark water pump sensor time-series data, the model successfully classified all water pump breakdowns and correctly identified 98.8% of anomalous data and 94.8 % of normal data using a chosen best window length of the past 37 sensor readings.\",\"PeriodicalId\":340397,\"journal\":{\"name\":\"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI56532.2022.10068441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测性维护旨在防止设备和流程的停机和故障,以满足工业、商业甚至住宅活动的质量和可用性要求。本文提出了一种新的卷积自编码器异常检测方法CAE-AD,该方法仅依赖于正常运行数据来训练智能分类器。该方法还包含用于从传感器读数生成输入的滑动窗口算法,该算法考虑了数据的动态特性。异常检测是通过将卷积自编码器重建误差与阈值进行比较来隔离正常和异常预测来完成的。通过最小化假阳性率和假阴性率来找到阈值。使用基准水泵传感器时间序列数据,该模型成功地对所有水泵故障进行了分类,并通过选择过去37个传感器读数的最佳窗口长度,正确识别出98.8%的异常数据和94.8%的正常数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection with Convolutional Autoencoder for Predictive Maintenance
Predictive maintenance is set to prevent downtime and failures of equipment and processes to meet the quality and availability requirements of several industrial, commercial, and even residential activities. This paper proposes CAE-AD, a novel convolutional autoencoder anomaly detection method that relies only on normal operation data for training the intelligent classi-fier. The method also accommodates a sliding window algorithm for generating the input from sensor readings, which accounts for the dynamic characteristics of the data. The anomaly detection is accomplished by comparing the convolutional autoencoder reconstruction error to a threshold value to segregate between normal and anomalous predictions. The threshold value is found by minimizing the False Positive Rates and False Negative Rates. Using a benchmark water pump sensor time-series data, the model successfully classified all water pump breakdowns and correctly identified 98.8% of anomalous data and 94.8 % of normal data using a chosen best window length of the past 37 sensor readings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信