通用材料翻译器:迈向欺骗指纹泛化

Rohit Gajawada, Additya Popli, T. Chugh, A. Namboodiri, Anil K. Jain
{"title":"通用材料翻译器:迈向欺骗指纹泛化","authors":"Rohit Gajawada, Additya Popli, T. Chugh, A. Namboodiri, Anil K. Jain","doi":"10.1109/ICB45273.2019.8987320","DOIUrl":null,"url":null,"abstract":"Spoof detectors are classifiers that are trained to distinguish spoof fingerprints from bonafide ones. However, state of the art spoof detectors do not generalize well on unseen spoof materials. This study proposes a style transfer based augmentation wrapper that can be used on any existing spoof detector and can dynamically improve the robustness of the spoof detection system on spoof materials for which we have very low data. Our method is an approach for synthesizing new spoof images from a few spoof examples that transfers the style or material properties of the spoof examples to the content of bonafide fingerprints to generate a larger number of examples to train the classifier on. We demonstrate the effectiveness of our approach on materials in the publicly available LivDet 2015 dataset and show that the proposed approach leads to robustness to fingerprint spoofs of the target material.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Universal Material Translator: Towards Spoof Fingerprint Generalization\",\"authors\":\"Rohit Gajawada, Additya Popli, T. Chugh, A. Namboodiri, Anil K. Jain\",\"doi\":\"10.1109/ICB45273.2019.8987320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoof detectors are classifiers that are trained to distinguish spoof fingerprints from bonafide ones. However, state of the art spoof detectors do not generalize well on unseen spoof materials. This study proposes a style transfer based augmentation wrapper that can be used on any existing spoof detector and can dynamically improve the robustness of the spoof detection system on spoof materials for which we have very low data. Our method is an approach for synthesizing new spoof images from a few spoof examples that transfers the style or material properties of the spoof examples to the content of bonafide fingerprints to generate a larger number of examples to train the classifier on. We demonstrate the effectiveness of our approach on materials in the publicly available LivDet 2015 dataset and show that the proposed approach leads to robustness to fingerprint spoofs of the target material.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

欺骗检测器是经过训练来区分欺骗指纹和真实指纹的分类器。然而,最先进的欺骗探测器不能很好地推广看不见的欺骗材料。本研究提出了一种基于风格转移的增强包装器,该包装器可用于任何现有的欺骗检测器,并且可以动态地提高欺骗检测系统对我们拥有非常低数据的欺骗材料的鲁棒性。我们的方法是一种从几个欺骗样本中合成新的欺骗图像的方法,该方法将欺骗样本的风格或材料属性转移到真实指纹的内容中,以生成更多的样本来训练分类器。我们在公开可用的LivDet 2015数据集中证明了我们的方法在材料上的有效性,并表明所提出的方法对目标材料的指纹欺骗具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Material Translator: Towards Spoof Fingerprint Generalization
Spoof detectors are classifiers that are trained to distinguish spoof fingerprints from bonafide ones. However, state of the art spoof detectors do not generalize well on unseen spoof materials. This study proposes a style transfer based augmentation wrapper that can be used on any existing spoof detector and can dynamically improve the robustness of the spoof detection system on spoof materials for which we have very low data. Our method is an approach for synthesizing new spoof images from a few spoof examples that transfers the style or material properties of the spoof examples to the content of bonafide fingerprints to generate a larger number of examples to train the classifier on. We demonstrate the effectiveness of our approach on materials in the publicly available LivDet 2015 dataset and show that the proposed approach leads to robustness to fingerprint spoofs of the target material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信