基于检索的聊天机器人多回合响应选择的上下文感知网络

Jinghua Zhu, Dandan Yuan, Heran Xi
{"title":"基于检索的聊天机器人多回合响应选择的上下文感知网络","authors":"Jinghua Zhu, Dandan Yuan, Heran Xi","doi":"10.1145/3478472.3478479","DOIUrl":null,"url":null,"abstract":"Multi-turn response selection is a major challenge for chatbot dialogue systems. The existing methods either ignore the interactions among previous utterances for context modeling, or regard all the previous utterances of the same importance. In this paper, we propose a context-aware network (CAN) for the multi-turn response selection task. The main idea of CAN is to learn the unified representation vector of the utterance and response for response matching. First, CAN uses a hierarchical attention mechanism to extract important features of utterances for modeling the utterance representation . Then CAN separates the current message from the historical dialogues, and calculates the matching degree between the current message and each historical dialogue to get the utterances aggregation representation. Finally, CAN uses multi-layer perceptron (MLP) to predicate the score of each response. Experiments on three public datasets show that CAN outperforms the baseline models on most metrics and demonstrates compatibility across domains for multi-turn response selection.","PeriodicalId":344692,"journal":{"name":"Proceedings of the 2021 International Conference on Human-Machine Interaction","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-Aware Network for Multi-Turn Response Selection in Retrieval-Based Chatbots\",\"authors\":\"Jinghua Zhu, Dandan Yuan, Heran Xi\",\"doi\":\"10.1145/3478472.3478479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-turn response selection is a major challenge for chatbot dialogue systems. The existing methods either ignore the interactions among previous utterances for context modeling, or regard all the previous utterances of the same importance. In this paper, we propose a context-aware network (CAN) for the multi-turn response selection task. The main idea of CAN is to learn the unified representation vector of the utterance and response for response matching. First, CAN uses a hierarchical attention mechanism to extract important features of utterances for modeling the utterance representation . Then CAN separates the current message from the historical dialogues, and calculates the matching degree between the current message and each historical dialogue to get the utterances aggregation representation. Finally, CAN uses multi-layer perceptron (MLP) to predicate the score of each response. Experiments on three public datasets show that CAN outperforms the baseline models on most metrics and demonstrates compatibility across domains for multi-turn response selection.\",\"PeriodicalId\":344692,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Human-Machine Interaction\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Human-Machine Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3478472.3478479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Human-Machine Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478472.3478479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多回合响应选择是聊天机器人对话系统面临的主要挑战。现有的方法要么忽略了之前话语之间的相互作用来进行上下文建模,要么将所有之前的话语都视为同等重要的。在本文中,我们提出了一个上下文感知网络(CAN)用于多回合响应选择任务。CAN的主要思想是学习话语和响应的统一表示向量,进行响应匹配。首先,CAN使用分层注意机制提取话语的重要特征,为话语表征建模。然后CAN将当前消息从历史对话中分离出来,计算当前消息与每个历史对话的匹配度,得到话语聚合表示。最后,CAN使用多层感知器(MLP)来预测每个响应的得分。在三个公共数据集上的实验表明,CAN在大多数指标上优于基线模型,并且在多回合响应选择方面展示了跨域的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Aware Network for Multi-Turn Response Selection in Retrieval-Based Chatbots
Multi-turn response selection is a major challenge for chatbot dialogue systems. The existing methods either ignore the interactions among previous utterances for context modeling, or regard all the previous utterances of the same importance. In this paper, we propose a context-aware network (CAN) for the multi-turn response selection task. The main idea of CAN is to learn the unified representation vector of the utterance and response for response matching. First, CAN uses a hierarchical attention mechanism to extract important features of utterances for modeling the utterance representation . Then CAN separates the current message from the historical dialogues, and calculates the matching degree between the current message and each historical dialogue to get the utterances aggregation representation. Finally, CAN uses multi-layer perceptron (MLP) to predicate the score of each response. Experiments on three public datasets show that CAN outperforms the baseline models on most metrics and demonstrates compatibility across domains for multi-turn response selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信