{"title":"热载流子诱导的非晶InGaZnO薄膜晶体管源极和漏极材料的器件退化","authors":"Ki Hoon Lee, Taehyun Kang, K. Lee, J. T. Park","doi":"10.6109/jkiice.2017.21.1.82","DOIUrl":null,"url":null,"abstract":"In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and I ON /I OFF . From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.","PeriodicalId":136663,"journal":{"name":"The Journal of the Korean Institute of Information and Communication Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials\",\"authors\":\"Ki Hoon Lee, Taehyun Kang, K. Lee, J. T. Park\",\"doi\":\"10.6109/jkiice.2017.21.1.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and I ON /I OFF . From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.\",\"PeriodicalId\":136663,\"journal\":{\"name\":\"The Journal of the Korean Institute of Information and Communication Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Korean Institute of Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/jkiice.2017.21.1.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Korean Institute of Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jkiice.2017.21.1.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文制备了具有Ni、Al和ITO源极和漏极材料的InGaZnO薄膜晶体管,并根据电极材料分析了热载子诱导器件的退化。从电极材料的电学测量结果来看,Ni器件在迁移率、亚阈值摆幅和I ON /I OFF方面表现出最佳的电学性能。从源极和漏极材料对器件退化的测量结果来看,Al器件表现出最严重的器件退化。测量了不同通道宽度下的阈值电压位移和应力漏极电压,分析了热载流子诱导器件的退化机理。随着通道宽度和应力漏极电压的增加,热载流子引起的器件退化更为明显。结果表明,在大通道电场和焦耳热效应的共同作用下,InGaZnO薄膜晶体管发生了热载流子诱导的器件退化。
Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials
In this work, InGaZnO thin film transistors with Ni, Al and ITO source and drain electrode materials were fabricated to analyze a hot carrier induced device degradation according to the electrode materials. From the electrical measurement results with electrode materials, Ni device shows the best electrical performances in terms of mobility, subthreshold swing, and I ON /I OFF . From the measurement results on the device degradation with source and drain electrode materials, Al device shows the worst device degradation. The threshold voltage shifts with different channel widths and stress drain voltages were measured to analyze a hot carrier induced device degradation mechanism. Hot carrier induced device degradation became more significant with increase of channel widths and stress drain voltages. From the results, we found that a hot carrier induced device degradation in InGaZnO thin film transistors was occurred with a combination of large channel electric field and Joule heating effects.