beta版、基准和击败市场

Zurab Kakushadze, Willie Yu
{"title":"beta版、基准和击败市场","authors":"Zurab Kakushadze, Willie Yu","doi":"10.2139/ssrn.3187779","DOIUrl":null,"url":null,"abstract":"This article provides an explicit formulaic algorithm and source code for building long-only benchmark portfolios and then using these benchmarks in long-only market outperformance strategies. The benchmarks (or the corresponding betas) do not involve any principal components, nor do they require iterations. Instead, the authors use a multifactor risk model (which uses multilevel industry classification or clustering) specifically tailored to long-only benchmark portfolios to compute their weights, which are explicitly positive in the construction.","PeriodicalId":254660,"journal":{"name":"The Journal of Trading","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betas, Benchmarks, and Beating the Market\",\"authors\":\"Zurab Kakushadze, Willie Yu\",\"doi\":\"10.2139/ssrn.3187779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides an explicit formulaic algorithm and source code for building long-only benchmark portfolios and then using these benchmarks in long-only market outperformance strategies. The benchmarks (or the corresponding betas) do not involve any principal components, nor do they require iterations. Instead, the authors use a multifactor risk model (which uses multilevel industry classification or clustering) specifically tailored to long-only benchmark portfolios to compute their weights, which are explicitly positive in the construction.\",\"PeriodicalId\":254660,\"journal\":{\"name\":\"The Journal of Trading\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Trading\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3187779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3187779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一个明确的公式化算法和源代码,用于构建只做多的基准投资组合,然后在只做多的市场胜出策略中使用这些基准。基准测试(或相应的beta测试)不涉及任何主要组件,也不需要迭代。相反,作者使用了一个多因素风险模型(使用多层次行业分类或聚类),专门针对只做多的基准投资组合来计算它们的权重,这在结构中是明确的正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Betas, Benchmarks, and Beating the Market
This article provides an explicit formulaic algorithm and source code for building long-only benchmark portfolios and then using these benchmarks in long-only market outperformance strategies. The benchmarks (or the corresponding betas) do not involve any principal components, nor do they require iterations. Instead, the authors use a multifactor risk model (which uses multilevel industry classification or clustering) specifically tailored to long-only benchmark portfolios to compute their weights, which are explicitly positive in the construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信