基于自适应神经模糊技术和遗传算法的智能自动驾驶仪设计

A. Elbatal, M. Elkhatib, A. Youssef
{"title":"基于自适应神经模糊技术和遗传算法的智能自动驾驶仪设计","authors":"A. Elbatal, M. Elkhatib, A. Youssef","doi":"10.1109/ICEENG45378.2020.9171702","DOIUrl":null,"url":null,"abstract":"In the last decade, the Unmanned Aerial Vehicles (UAVs) industry has a rapid progress in the development and optimization of UAV’s autopilot systems. This paper proposes two flight control methods using the Aerosonde simulation model, which was modeled and simulated using Simulink/MATLAB software. The two methods are a self-tuning PID controller using genetic algorithm and Adaptive Neuro-fuzzy Inference System controller (ANFIS). In a self-tuning PID controller, a PID is genetically controlled and utilized as an autopilot to optimize the controller parameters for the proposed UAV model. However, the second method is based on fuzzy logic controller tuned using neural network. For the main navigation system Three fuzzy logic modules are designed to monitor the altitude, speed and heading angle. Simulation results for the two methods reveal high robustness and durability of ANFIS controller response especially under windy conditions.","PeriodicalId":346636,"journal":{"name":"2020 12th International Conference on Electrical Engineering (ICEENG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intelligent Autopilot Design Based on Adaptive Neuro -Fuzzy Technique and Genetic Algorithm\",\"authors\":\"A. Elbatal, M. Elkhatib, A. Youssef\",\"doi\":\"10.1109/ICEENG45378.2020.9171702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, the Unmanned Aerial Vehicles (UAVs) industry has a rapid progress in the development and optimization of UAV’s autopilot systems. This paper proposes two flight control methods using the Aerosonde simulation model, which was modeled and simulated using Simulink/MATLAB software. The two methods are a self-tuning PID controller using genetic algorithm and Adaptive Neuro-fuzzy Inference System controller (ANFIS). In a self-tuning PID controller, a PID is genetically controlled and utilized as an autopilot to optimize the controller parameters for the proposed UAV model. However, the second method is based on fuzzy logic controller tuned using neural network. For the main navigation system Three fuzzy logic modules are designed to monitor the altitude, speed and heading angle. Simulation results for the two methods reveal high robustness and durability of ANFIS controller response especially under windy conditions.\",\"PeriodicalId\":346636,\"journal\":{\"name\":\"2020 12th International Conference on Electrical Engineering (ICEENG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 12th International Conference on Electrical Engineering (ICEENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEENG45378.2020.9171702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Electrical Engineering (ICEENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEENG45378.2020.9171702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近十年来,无人机行业在无人机自动驾驶系统的开发和优化方面取得了快速进展。本文利用Aerosonde仿真模型提出了两种飞行控制方法,并利用Simulink/MATLAB软件对该模型进行了建模和仿真。这两种方法是采用遗传算法的自整定PID控制器和自适应神经模糊推理系统控制器(ANFIS)。在自整定PID控制器中,PID被遗传控制并用作自动驾驶仪来优化所提出的无人机模型的控制器参数。第二种方法是基于神经网络的模糊控制器。对于主导航系统,设计了三个模糊逻辑模块来监控高度、速度和航向角。仿真结果表明,两种方法具有较好的鲁棒性和耐久性,特别是在大风条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Autopilot Design Based on Adaptive Neuro -Fuzzy Technique and Genetic Algorithm
In the last decade, the Unmanned Aerial Vehicles (UAVs) industry has a rapid progress in the development and optimization of UAV’s autopilot systems. This paper proposes two flight control methods using the Aerosonde simulation model, which was modeled and simulated using Simulink/MATLAB software. The two methods are a self-tuning PID controller using genetic algorithm and Adaptive Neuro-fuzzy Inference System controller (ANFIS). In a self-tuning PID controller, a PID is genetically controlled and utilized as an autopilot to optimize the controller parameters for the proposed UAV model. However, the second method is based on fuzzy logic controller tuned using neural network. For the main navigation system Three fuzzy logic modules are designed to monitor the altitude, speed and heading angle. Simulation results for the two methods reveal high robustness and durability of ANFIS controller response especially under windy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信