电子学习对教育部门的影响:情感分析观点

S. Sayeedunnisa, Maniza Hijab
{"title":"电子学习对教育部门的影响:情感分析观点","authors":"S. Sayeedunnisa, Maniza Hijab","doi":"10.1109/IATMSI56455.2022.10119450","DOIUrl":null,"url":null,"abstract":"The COVID-19 condition had a substantial impact on the education sector, corporate sector and even the life of individual. With this pandemic situation e-learning/distance learning has become certain in the education sector. In spite of being beneficial to students and teachers, its efficacy in the education domain depends on several factors such as handiness of ICT devices in various socio economic groups of people and accessible internet facility. To analyze the effectiveness of this new system of e learning Sentiment Analysis plays a predominant role in identifying the user's perception. This paper focus on identifying opinions of social media users i.e. Twitter on the most prevailing issue of online learning. To analyze the subjectivity and polarity of the dynamic tweets extracted from Twitter the proposed study adopts TextBlob. As Machine Learning (ML) models and techniques manifests superior accuracy and efficacy in opinion classification, the proposed solution uses, TF-IDF (Term Frequency-Inverse Document Frequency) as feature extraction technique to build and evaluate the model. This manuscript analyses the performance of Multinomial Naive Bayes Classifier, DecisionTreeClassifier, SVC and MLP Classifier with respect to performance measure as Accuracy.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of e-Learning in Education Sector: A Sentiment Analysis View\",\"authors\":\"S. Sayeedunnisa, Maniza Hijab\",\"doi\":\"10.1109/IATMSI56455.2022.10119450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 condition had a substantial impact on the education sector, corporate sector and even the life of individual. With this pandemic situation e-learning/distance learning has become certain in the education sector. In spite of being beneficial to students and teachers, its efficacy in the education domain depends on several factors such as handiness of ICT devices in various socio economic groups of people and accessible internet facility. To analyze the effectiveness of this new system of e learning Sentiment Analysis plays a predominant role in identifying the user's perception. This paper focus on identifying opinions of social media users i.e. Twitter on the most prevailing issue of online learning. To analyze the subjectivity and polarity of the dynamic tweets extracted from Twitter the proposed study adopts TextBlob. As Machine Learning (ML) models and techniques manifests superior accuracy and efficacy in opinion classification, the proposed solution uses, TF-IDF (Term Frequency-Inverse Document Frequency) as feature extraction technique to build and evaluate the model. This manuscript analyses the performance of Multinomial Naive Bayes Classifier, DecisionTreeClassifier, SVC and MLP Classifier with respect to performance measure as Accuracy.\",\"PeriodicalId\":221211,\"journal\":{\"name\":\"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IATMSI56455.2022.10119450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新冠肺炎疫情对教育部门、企业乃至个人生活都产生了重大影响。在这种大流行病的情况下,电子学习/远程学习已成为教育部门的必然选择。尽管对学生和教师有益,但其在教育领域的有效性取决于几个因素,如ICT设备在各种社会经济群体中的便捷性和可访问的互联网设施。为了分析这种新的电子学习系统的有效性,情感分析在识别用户感知方面起着主导作用。本文的重点是识别社交媒体用户(即Twitter)对在线学习最普遍问题的看法。为了分析从Twitter中提取的动态推文的主观性和极性,本研究采用TextBlob。由于机器学习(ML)模型和技术在意见分类方面表现出优越的准确性和有效性,因此提出的解决方案使用TF-IDF (Term Frequency- inverse Document Frequency)作为特征提取技术来构建和评估模型。本文分析了多项朴素贝叶斯分类器、决策树分类器、SVC和MLP分类器在精度等性能度量方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of e-Learning in Education Sector: A Sentiment Analysis View
The COVID-19 condition had a substantial impact on the education sector, corporate sector and even the life of individual. With this pandemic situation e-learning/distance learning has become certain in the education sector. In spite of being beneficial to students and teachers, its efficacy in the education domain depends on several factors such as handiness of ICT devices in various socio economic groups of people and accessible internet facility. To analyze the effectiveness of this new system of e learning Sentiment Analysis plays a predominant role in identifying the user's perception. This paper focus on identifying opinions of social media users i.e. Twitter on the most prevailing issue of online learning. To analyze the subjectivity and polarity of the dynamic tweets extracted from Twitter the proposed study adopts TextBlob. As Machine Learning (ML) models and techniques manifests superior accuracy and efficacy in opinion classification, the proposed solution uses, TF-IDF (Term Frequency-Inverse Document Frequency) as feature extraction technique to build and evaluate the model. This manuscript analyses the performance of Multinomial Naive Bayes Classifier, DecisionTreeClassifier, SVC and MLP Classifier with respect to performance measure as Accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信