L. Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Chih-Chieh Hung, Wen-Chih Peng
{"title":"真报警:信息物理系统中传感器网络的可信度分析","authors":"L. Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Chih-Chieh Hung, Wen-Chih Peng","doi":"10.1109/ICDM.2010.63","DOIUrl":null,"url":null,"abstract":"A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational)components to form a situation-integrated analytical system that responds intelligently to dynamic changes of the real-world scenarios. One key issue in CPS research is trustworthiness analysis of the observed data: Due to technology limitations and environmental influences, the CPS data are inherently noisy that may trigger many false alarms. It is highly desirable to sift meaningful information from a large volume of noisy data. In this paper, we propose a method called Tru-Alarm which finds out trustworthy alarms and increases the feasibility of CPS. Tru-Alarm estimates the locations of objects causing alarms, constructs an object-alarm graph and carries out trustworthiness inferences based on linked information in the graph. Extensive experiments show that Tru-Alarm filters out noises and false information efficiently and guarantees not missing any meaningful alarms.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Tru-Alarm: Trustworthiness Analysis of Sensor Networks in Cyber-Physical Systems\",\"authors\":\"L. Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Chih-Chieh Hung, Wen-Chih Peng\",\"doi\":\"10.1109/ICDM.2010.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational)components to form a situation-integrated analytical system that responds intelligently to dynamic changes of the real-world scenarios. One key issue in CPS research is trustworthiness analysis of the observed data: Due to technology limitations and environmental influences, the CPS data are inherently noisy that may trigger many false alarms. It is highly desirable to sift meaningful information from a large volume of noisy data. In this paper, we propose a method called Tru-Alarm which finds out trustworthy alarms and increases the feasibility of CPS. Tru-Alarm estimates the locations of objects causing alarms, constructs an object-alarm graph and carries out trustworthiness inferences based on linked information in the graph. Extensive experiments show that Tru-Alarm filters out noises and false information efficiently and guarantees not missing any meaningful alarms.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tru-Alarm: Trustworthiness Analysis of Sensor Networks in Cyber-Physical Systems
A Cyber-Physical System (CPS) integrates physical devices (e.g., sensors, cameras) with cyber (or informational)components to form a situation-integrated analytical system that responds intelligently to dynamic changes of the real-world scenarios. One key issue in CPS research is trustworthiness analysis of the observed data: Due to technology limitations and environmental influences, the CPS data are inherently noisy that may trigger many false alarms. It is highly desirable to sift meaningful information from a large volume of noisy data. In this paper, we propose a method called Tru-Alarm which finds out trustworthy alarms and increases the feasibility of CPS. Tru-Alarm estimates the locations of objects causing alarms, constructs an object-alarm graph and carries out trustworthiness inferences based on linked information in the graph. Extensive experiments show that Tru-Alarm filters out noises and false information efficiently and guarantees not missing any meaningful alarms.